МИКРОБИОЛОГИЯ

© КОЛЛЕКТИВ АВТОРОВ, 2024

Багирова Н.С., Петухова И.Н., Григорьевская З.В., Агинова В.В.

НОЗОКОМИАЛЬНЫЕ ИНФЕКЦИИ У ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ: ПРОФИЛЬ ВОЗБУДИТЕЛЕЙ И РЕЗИСТЕНТНОСТЬ

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава РФ, 115552, Москва, Россия

Цель работы - определить клинически значимые виды возбудителей, вызывающих инфекционные осложнения в онкологическом стационаре; сравнение возбудителей у хирургических и у нехирургических больных; определение резистентности, основные типы карбапенемаз грамотрицательных бактерий. Изучено 2782 изолята (01.01.2022-30.04.2023). В таксономической структуре лидируют грамотрицательные палочки (60,7%), за ними следуют грамположительные кокки (24,2%) и грибы (15,1%). Проблемными патогенами являются К. pneumoniae (21,8%) и Е. coli (20,9%). Установлен высокий уровень резистентности ко многим антимикробным препаратам разных классов. 53,7% грамотрицательных бактерий продуцировали карбапенемазы. Карбапенемазы основных возбудителей инфекционных осложнений у онкологических больных определяли для итаммов, резистентных іп vitro к меропенему (для Р. aeruginosa) и с МИК >0,125 (для Enterobacterales). Р. aeruginosa продуцирует в основном тип VIM и, в отдельных случаях, IMP-1 и NDM. Штаммы Е. coli характеризуются разными типами карбапенемаз, причём в одном случае идентифицировано сразу два типа - KPC и NDM. Среди итаммов Е. coli реже всего вывялись продуценты карбапенемаз. Основная масса карбапенемаз обнаружена у штаммов К. pneumoniae, преимущественно типа ОХА-48 отдельно или в сочетании с NDM или КРС. Способность к сверхпродукции бета-лактамаз у изолятов S. aureus выявлена в 91,7% случаев, MRSA - более 11%; устойчивость к ванкомицину 3,2% и линезолиду 0,5%. Устойчивость Е. faecium значительно выше, чем у Е. faecalis. Основным видом рода Candida является С. albicans (70,5%), устойчивые изоляты преимущественно принадлежали этому виду.

Ключевые слова: нозокомиальные инфекции; бактериальные инфекции; этиология; резистентность к антимикробным препаратам; рак

Для цитирования: Багирова Н.С., Петухова И.Н., Григорьевская З.В., Агинова В.В. Нозокомиальные инфекции у онкологических больных: профиль возбудителей и резистентность. *Клиническая лабораторная диагностика*. 2024; 69 (3): 153-165. DOI: https://doi.org/10.51620/0869-2084-2024-69-3-153-165

Для корреспонденции: *Багирова Наталия Сергеевна*, д-р мед. наук, вед. науч. сотр. бактериологической лаборатории; e-mail: nbagirova@mail.ru

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование выполнено при финансовой поддержке Минздрава Российской Федерации в рамках НИР по теме 123021600103-5.

Поступила 27.12.2023 Принята к печати 17.01.2024 Опубликовано 01.03.2024

Bagirova N.S., Petukhova I.N., Grigorievskaya Z.V., Aginova V.V.

NOSOCOMIAL INFECTIONS IN CANCER PATIENTS: PATHOGENS PROFILE AND RESISTANCE

Federal State Budgetary Institution «N. N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 115552, Moscow, Russia

Objective: to determine clinically significant types of pathogens causing infectious complications in oncology hospital; comparison of pathogens of surgical and non-surgical patients; definition of resistance, main types of carbapenemases in gram-negative bacteria. 2782 isolates were studied (01.01.2022-30.04.2023). In the taxonomic structure, gram-negative rods (60.7%) are in the lead, followed by gram-positive cocci (24.2%) and fungi (15.1%). K. pneumoniae (21.8%) and E. coli (20.9%) are main. A high level of resistance to many antimicrobial drugs of different classes was established. 53.7% of gram-negative bacteria produced carbapenemases. Carbapenemases produced by causative agents of infectious complications in cancer patients were determined if strains were resistant in vitro to meropenem (for P. aeruginosa) or MIC >0.125 (for Enterobacterales). P. aeruginosa produced mainly the VIM type and rarely IMP-1 and NDM. E. coli strains are characterized by different types of carbapenemases, and in one case two types were identified at once - KPC and NDM. Among E. coli strains, carbapenemase producers were the least frequently detected. The bulk of carbapenemases are found in K. pneumoniae strains, mainly the OXA-48 type alone or in combination with NDM or KPC. The ability to overproduce betalactamases in S. aureus isolates was detected in 91.7% of cases, MRSA was more than 11%; resistance to Vancomycin 3.2% and Linezolid 0.5%. The resistance for E. faecium is significantly higher compared for E. faecalis. The main species of the genus Candida is C. albicans (70.5%), resistant isolates mainly belonged to this species.

Key words: nosocomial infections; bacterial infections; etiology, antibiotic resistance; cancer

For citation: Bagirova N.S., Petukhova I.N., Grigorievskaya Z.V., Aginova V.V. Nosocomial infections in cancer patients: pathogens profile and resistance. *Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics)*. 2024; 69 (3):

154-166 (in Russ.). DOI: https://doi.org/10.51620/0869-2084-2024-69-3-153-165

For correspondence: Bagirova Nataliya Sergeevna, Doctor of Medical Sciences, Leading

Researcher of the Microbiological Laboratory; e-mail: nbagirova@mail.ru

Information about authors:

 Bagirova N. S.,
 https://orcid.org/0000-0003-1405-3536;

 Petukhova I.N.,
 https://orcid.org/0000-0003-3077-0447;

 Grigorievskaya Z.V.,
 https://orcid.org/0000-0003-4294-1995;

 Aginova V.V.,
 https://orcid.org/0000-0003-1787-2676.

Conflict of interest. The authors declare absence of conflicts of interests.

Acknowledgment. The study was done with the financial support of the Ministry of Health of the Russian Federation within the framework of the research work on the topic 123021600103-5

Received 27.12.2023 Accepted 17.01.2024 Published 01.03.2024

Введение. Инфекционные осложнения бактериальной природы являются одним из наиболее частых осложнений при лечении рака [1,2]. Несмотря на то, что показатели летальности в популяции онкологических больных в последние годы продолжают снижаться, инфекции остаются важной причиной летальности пациентов [3]. Риск смерти от тяжёлых инфекций у онкологического пациента в 3 раза выше, чем у пациента без онкологического заболевания [4]. Инфекционные осложнения являются причиной смерти примерно 50% пациентов с гематологическими злокачественными новообразованиями или солидными опухолями [5], даже если инфекционные осложнения редко указывают в качестве официальной причины смерти [6]. В некоторых исследованиях показано, что грамотрицательные бактерии могут способствовать прогрессированию злокачественных новообразований и поддерживать метастазирование опухоли [7-9].

Масштабные исследования выявили группу из шести микроорганизмов, иначе классифицированных как патогены «ESKAPE», которые наиболее часто оказываются возбудителями бактериальной инфекции и устойчивости к антимикробным препаратам (АМП) во время лечения онкологических больных. Эти микроорганизмы включают Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp. [10, 11].

К. pneumoniae является ведущей причиной сепсиса и наиболее частой причиной бактериемии, пневмонии, раневых инфекций, абсцессов, инфекций мочевыводящих путей у онкологических больных [12, 13].

Инфекции, связанные с оказанием медицинской помощи (ИСМП), вызванные *А. baumannii*, могут привести к летальному исходу у иммунокомпрометированных пациентов, особенно у больных раком, в 80% случаев при инфекциях кровотока, менингите, инфекциях дыхательных и мочевыводящих путей, кожных инфекциях [14-16].

P. aeruginosa является всё более распространённым условно-патогенным микроорганизмом (УПМ), который может вызывать разнообразные серьёзные и опасные для жизни ИСМП у онкологических больных [12].

Enterobacter spp. могут инфицировать дыхательные пути, хирургические раны, мочевыводящие пути и кровоток онкологических больных [16, 17].

Энтерококковые инфекции - инфекции мочевыводя-

щих путей, инфекции кровотока и эндокардит, развивающиеся во время специфической противоопухолевой терапии. Большинство энтерококковых инфекций у онкологических больных представляют собой бактериемию, вызванную *E. faecalis* [18, 19].

S. aureus оказывает значительное клиническое влияние на уровень смертности пациентов со злокачественными новообразованиями. Стафилококковые инфекции часто приводят к инфекциям кровотока, кожным инфекциям, пневмонии и эндокардиту [13,16].

Появление приобретённой резистентности к антимикробным препаратам (АМП) и её распространение - серьёзная клиническая проблема, поскольку её невозможно прогнозировать в отношении конкретного возбудителя. Не всегда приобретённая резистентность влияет на клиническую эффективность АМП. Изменение субстратной специфичности является важным последствием мутаций в генах. Активность ферментов, возникающих в результате таких мутаций, зависит от типа мутации, вследствие чего в отношении одних АМП активность ферментов может быть слабой, а в отношении других сильной [20, 21]. Крайне важно проводить мониторинг по определению и распространению резистентности микроорганизмов к АМП с целью коррекции принятых схем терапии ИСМП. Мониторинг резистентности к АМП будет наиболее эффективным, если его проводить в каждом конкретном стационаре, поскольку на результативность влияют многие факторы (принятые схемы лечения инфекции, профиль отделения, нерациональное и чрезмерное использование АМП), формирующие и таксономическую структуру возбудителей, и уровень резистентности к АМП [22, 23]. Грамотрицательные бактерии, продуцирующие бета-лактамазы, и особенно карбапенемазы, считаются одной из самых серьёзных и критических угроз в мире [24-26]. Распространенность ИСМП, вызванных бактериями с множественной лекарственной устойчивостью (МЛУ), у онкологических больных составляет по разным оценкам от 17,1% до 36,6% [2]. До недавнего времени считалось, что бактерии, продуцирующие бета-лактамазы, вызывают внутрибольничные инфекции. В настоящее время бактерии с такими свойствами обнаруживаются и во внебольничных условиях. [25]. Продукция бактериями нескольких типов бета-лактамаз стала обычным явлением для современных нозокомиальных изо-

лятов, особенно у грамотрицательных палочек, где мобильные генетические элементы, несущие разнообразные факторы устойчивости, свободно передаются между видами. Наиболее часто продукция нескольких типов бета-лактамаз обнаруживается у штаммов K. рпеитопіае (60%). Изоляты, продуцирующие карбапенемазы типа КРС, чаще выявлялись в сочетании с металлокарбапенемазой типа VIM (75%), Штаммы, вырабатывающие ферменты типа ОХА-48, чаще всего сочетались с металлокарбапенемазой, наиболее часто - в сочетании с NDM - в 81% [25]. ИСМП, вызванные возбудителями, продуцирующими бета-лактамазы, связаны с серьёзными неблагоприятными последствиями: неэффективность терапии, увеличение летальности, экономических затрат. Создается угроза потери возможностей лечения других пациентов [27]. Изоляты, способные вырабатывать ферменты типа КРС, устойчивы к большинству бета-лактамов и часто обладают МЛУ, поскольку гены, ответственные за продукцию карбапенемазы КРС, дополнительно кодируют ряд других генов устойчивости, что формирует панрезистентные штаммы. Карбапенемазы КРС-типа не ингибируются клавуланатом или тазобактамом, но чувствительны к действию авибактама, релебактама, ваборбактама. При определённых условиях штаммы с мутациями *blaKPC* могут трансформироваться в устойчивые к действию авибактама [25]. Мощная природная стабильность КРС может способствовать приобретению этим ферментом in vivo мутации, придающие устойчивость к цефтазидиму/авибактаму, например, посредством вставок и делеций (63% штаммов). Способность фермента модифицировать свою структуру подтверждает его пластичность и способность адаптироваться к новым субстратам [28].

Карбапенемазы класса D (ОХА-23, ОХА-40 и всё более распространённый ОХА-48 с родственными ему вариантами ОХА-162, ОХА-181, ОХА-232). ОХА-48, как правило, обладают гидролитической активностью в отношении карбапенемов и плохо инактивируются ингибиторами карбапенемаз, за исключением авибактама. Тип ОХА-48 гидролизует имипенем, но в меньшей степени проявляет активность в отношении меропенема. Штаммы, продуцирующие OXA-48, могут быть чувствительны к цефалоспоринам и иметь умеренно повышенные значения МИК для карбапенемов, которые in vitro расценивают как чувствительные к имипенему. Низкий уровень резистентности к карбапенемам, обусловленный ОХА-48, может затруднить обнаружение штаммов, несущих этот механизм устойчивости [25]. Продукция ферментов ОХА-23, ОХА 24/40 является основным механизмом устойчивости к карбапенемам для штаммов А. baumannii, он обеспечивает высокий уровень резистентности к имипенему и меропенему $(M\Pi K > 32 \text{ мкг/мл}) [25].$

Растущий уровень устойчивости к АМП оказывает глубокое влияние на лечение больных раком [29]. Резистентность увеличивается настолько быстро, что многие учёные прогнозируют в отсутствие новых сверхмощных АМП наступление так называемой «постантибиотической эпохи», когда многие методы терапии в онкологии, считающиеся в настоящее время рутинными, окажутся под угрозой. К ним относятся медицинские достижения в хирургии,

лечении иммунокомпрометированных пациентов, реципиентов трансплантатов органов, пациентов с имплантатами [11, 30].

Материал и методы. Таксономическая структура возбудителей ИСМП у взрослых онкологических больных проанализирована за период с января 2022 по апрель 2023 года. Всего за исследованный период выделено 4964 клинических изолята, из них, на основании клинико-микробиологического анализа данных, 2782 штамма определены как клинически значимые и пригодные для исследования. Идентификация проводилась с использованием масс-спектрометрического анализа белковой фракции микробной клетки на приборе MALDI-ToF Microflex LT (Biotyper, Bruker Daltonіся, Германия). Систематически оценена распространённость резистентности основных бактериальных возбудителей к АМП. Тестирование чувствительности (определение минимальной ингибирующей концентрации, МИК) бактерий к АМП. проводилось с использованием микробиологического анализатора BD Phoenix 100 (Becton Dickinson, США), для оценки значения МИК использованы критерии EUCAST v. 13.0, valid from 2023-01-01); тестирование Candida spp. к антифунгальным препаратам - планшеты Sensititre Y010 (Trek Diagnostic Systems, Великобритания), для оценки значения МИК использованы критерии EUCAST V. 3.0, valid from 2022-01-18. Определение типа карбапенемаз P. aeruginosa и Enterobacterales (KPC, NDM, VIM, ОХА-48, IMP-1) осуществляли методом ПЦР с использованием теста Xpert Carba-R, выполняемый на системе GeneXpert (Cepheid, США).

Достоверность полученных результатов оценивали, вычисляя одновыборочный t-критерий (Стъюдента). Статистически значимыми считали различия с вероятностью не менее 95% (p<0,05). Статистические расчёты осуществляли с помощью специальной компьютерной программы, разработанной группой медицинской кибернетики ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава РФ.

Результаты. Виды исследуемых биоматериалов представлены в табл. 1.

Общее количество основных клинически значимых аэробных возбудителей, выделенных при инфекционных осложнениях у взрослых онкологических больных ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава РФ, составило 2782 (табл. 2).

Наиболее часто регистрировались грамотрицательные палочки, нежели грамположительные кокки (1690/2782, 60,7% против 672/2782, 24,2%, соответственно, p<0,0001) и грибы (1690/2782, 60,7% против 420/2782, 15,1%, соответственно, p<0,0001).

В группе грамотрицательных палочек лидируют *К. pneumoniae* и *E. coli*, *P. aeruginosa* выделялась в 2 раза реже. *A. baumannii* и *S. maltophilia* составили менее 4%.

В группе грамположительных кокков основными возбудителями являлись энтерококки (менее 9%) и *S. aureus* (7%).

Проведён сравнительный анализ таксономической структуры приоритетных клинически значимых аэробных возбудителей ИСМП у взрослых онкологических пациентов отделений хирургического и нехирургического профилей (табл. 3). Среди клинических изолятов из отделений нехирургического профиля преобладали

Таблица 1

Виды биоматериалов

Биоматериалы	Число больных	Количество биомате- риалов
Отделяемое из послеоперационной раны	504	819
Пунктаты из пролежней	23	27
Костная ткань	19	22
Пунктаты из абсцессов	33	33
Синовиальная жидкость	109	215
Спинномозговая жидкость	51	61
Перитонеальная жидкость	78	106
Плевральная жидкость	65	86
Прочие биологические жидкости (дренажи, лимфа, аспираты)	542	964
Желчь	402	480
Кровь	767	1768
БАЛ	200	378
Мокрота	159	196
Моча	679	1051
Внутрисосудистый катетер	169	188
Отделяемое из мочеполовой системы	14	15
Ухо, глаз	25	26
Полость рта (язвенно-некротические очаги)	140	194
Носоглотка (язвенно-некротические очаги)	45	57
Итого	4024	5867

Таблица 2 Таксономическая структура клинически значимых аэробных возбудителей ИСМП у взрослых онкологических пациентов

Вид микроорганизма	Всего штаммов, абс./%
Всего	2782/100
Грамотрицательные палочки	1690/60.7
K. pneumoniae	606/21.8
E. coli	581/20.9
P. aeruginosa	317/11.4
A. baumannii	94/3.4
S. maltophilia	92/3.3
Грамположительные кокки	672/24.2
S. aureus	193/7.0
E. faecalis	234/8.4
E. faecium	245/8.8
Candida spp.	420/15.1
C. albicans	296/10.6
C. glabrata	67/2.4
C. tropicalis	16/0.6
C. kefyr	10/0.4
C. krusei	8/0.3
C. inconspicua	8/0.3
C. parapsilosis	5/0.2
C. dubliniensis	4/0.1
C. lusitaniae	3/0.1
C. auris	2/0.1
C. pararugosa	1/0.04

штаммы, полученные от онкогематологических пациентов (340 из 813, 41,8%), причём 48,5% (165 из 340) штаммов приходится на грамотрицательные палочки, 36,2% (123 из 340) - на грамположительные кокки и 15,3% (52 из 340) - на *Candida* spp.

Согласно проведённому анализу, в отделениях хирургического профиля в сравнении с отделениями нехирургического профиля статистически значимо чаще инфекционные осложнения обусловлены грамотрицательными палочками (1293/1969, 65,7% против

397/813, 48,8%, соответственно, p<0,0001). В отделениях нехирургического профиля по сравнению с отделениями хирургического профиля преобладали грамположительные кокки (279/813, 34,3% против 283/1969, 20,0%, соответственно, p<0,0001).

Всего выделено 420 штаммов *Candida* spp. (11 видов) с преобладанием в видовом спектре *C. albicans*, на втором месте *C. glabrata*. Остальные виды выделялись реже. Из отделений хирургического профиля *Candida* spp. регистрировались статистически значимо чаще по сравнению с отделениями нехирургического профиля (283/420, 67,4% против 137/420, 32,6%, соответствен-

но, p<0,0001), что касается и отделений реанимации и интенсивной терапии (ОРИТ) (150 из 283, 53,0% против 32 из 137, 23,4%, соответственно, p<0,0001). C. albicans выделены статистически значимо чаще по сравнению с прочими видами Candida (non-albicans Candida, NAC) (296/420, 70,5% против 124/420, 29,5%, соответственно, p<0,0001). В группе NAC основная доля приходится на C. glabrata (67/124, 54,0%). В отделениях хирургического профиля виды NAC выделяли реже по сравнению с отделениями нехирургического профиля (77/283, 27,2% против 47/137, 34,3%, соответственно), но достоверных различий не выявлено.

Таблица 3 Таксономическая структура клинически значимых аэробных возбудителей ИСМП у взрослых онкологических пациентов отделений хирургического и нехирургического профилей

Микроорганизмы	Хирургические отделения Всего штаммов, абс./% 1969/100	Нехирургические отделения Всего штаммов, абс./% 813/100
Грамотрицательные	1293/65,7	397/48,8
K. pneumoniae	447/22,7	159/19,6
E. coli	432/21,9	149/18,3
P. aeruginosa	268/13,6	49/6,0
A. baumannii	77/3,9	17/2,1
S. maltophilia	69/3,5	23/2,8
Грамположительные	393/20,0	279/34,3
S. aureus	94/4,8	99/12,2
E. faecalis	151/7,7	83/10,2
E. faecium	148/7,5	97/11,9
Candida spp.	283/14,4	137/16,9
C. albicans	206/10,5	90/11,1
C. glabrata	47/2,4	20/2,5
C. tropicalis	13/0,7	3/0,4
C. kefyr	3/0,2	7/0,9
C. krusei	4/0,2	4/0,5
C. inconspicua	2/0,1	6/0,7
C. parapsilosis	4/0,2	1/0,1
C. dubliniensis	1/0,1	3/0,4
C. lusitaniae	1/0,1	2/0,3
C. auris	1/0,1	1/0,1
C. pararugosa	1/0,1	0
Candida non-albicans	77/27,2	47/34,3

Примечание, Жирным шрифтом выделены основные группы микроорганизмов.

Резистентность к антимикробным препаратам. Исследована in vitro чувствительность приоритетных клинически значимых возбудителей ИСМП к АМП у взрослых онкологических больных. Наиболее остро проблема резистентности, а, следовательно, и выбора адекватной и своевременной терапии, стоит в отношении К. pneumoniae (табл. 4). Наиболее высокий уровень резистентности отмечен к цефалоспоринам III и IV поколений (более 70%), к фторхинолонам (более 60%). Для имипенема и меропенема уровни резистентности составляют менее 40%, для эртапенема - более 50%. Самая низкая резистентность регистрируется к колистину (колистиметат натрия), 4,5%.

Выбор АМП для терапии инфекционных осложнений, обусловленных *A. baumannii*, невелик и ограничен достаточно высоким уровнем резистентности ко всем

 $AM\Pi$, кроме колистина (табл. 5).

Наиболее низкие уровни резистентности по сравнению с прочими клинически значимыми грамотрицательными палочками отмечены у штаммов E. coli (табл. 6).

Для лечения инфекционных осложнений, обусловленных *P. aeruginosa*, выбор АМП ограничен природной и приобретённой резистентностью штаммов этого вида. Фторхинолоны, согласно полученным нами данным, нельзя отнести к препаратам выбора при синегнойной инфекции, поскольку доля резистентных штаммов более 50-60%. И цефепим, и цефтазидим, вероятно, не будут клинически эффективны более чем в 40% случаев в отличие от колистина. Резистентность к меропенему примерно в два раза ниже, чем к имипенему (табл. 7).

Таблица 4 Резистентность штаммов *К. pneumoniae* к АМП

AMIT	F	R		
АМП	n=606	%		
Азтреонам	333	55.0		
Амикацин	230	38.0		
Амоксициллин/клавулановая кислота	465	76.7		
Гентамицин	353	58.3		
Имипенем	232	38.3		
Колистин	27	4.5		
Левофлоксацин	382	63.0		
Меропенем	230	38.0		
Пиперациллин/тазобактам	396	65.3		
Тобрамицин	375	61.9		
Триметоприм/сульфаметоксазол	419	69.1		
Фосфомицин	194	32.0		
Цефепим	438	72.3		
Цефотаксим	473	78.1		
Цефтазидим	447	73.8		
Цефтазидим/авибактам	152	25.1		
Цефтолозан/тазобактам	346	57.1		
Цефтриаксон	468	77.2		
Ципрофлоксацин	399	65.8		
Эртапенем	320	52.8		

Примечание. Здесь и в табл. 5-9: R – резистентность.

Таблица 5

Резистентность штаммов А. baumannii к АМП

АМП	R		
AMII	n=94	%	
Амикацин	58	61.7	
Ампициллин-сульбактам	80	85.1	
Гентамицин	89	94.7	
Имипенем	61	64.9	
Колистин	4	4.3	
Левофлоксацин	64	68.1	
Меропенем	63	67.0	
Тобрамицин	67	71.3	
Триметоприм/сульфаметоксазол	52	55.3	
Ципрофлоксацин	68	72.3	

 $S.\ maltophilia$ в таксономической структуре инфекционных осложнений у взрослых онкологических больных составляет только 3,3%, и резистентность к триметоприм/сульфаметоксазолу невысока (13 из 92, 14,1%).

Инфекционные осложнения, обусловленные *S. aureus*, в нашей клинике встречаются нечасто, и резистентность к большинству АМП невысока (табл. 8). Ориентируясь на резистентность к бензилпенициллину, можно предположить, что значительная часть штаммов способна к гиперпродукции бета-лактамаз. Доля MRSA более 11%. Тревожные показатели появления резистентности к ванкомицину и линезолиду.

Энтерококковые инфекции в онкологическом стационаре вызваны в основном *E. faecalis* и *E. faecium*.

Наиболее сложно, исходя из наших данных, подобрать терапию при инфекции, обусловленной $E.\ faecium$. Для линезолида и тигециклина регистрируется наиболее низкая резистентность для обоих видов (табл. 9).

Резистентность штаммов E. faecium к АМП значительно выше по сравнению с E. faecalis, что отражено на рис. 1.

Определение чувствительности *Candida* spp. к антифунгальным AMП сопряжено с определёнными сложностями, которые в основном связаны с отсутствием критериев оценки получаемых значений МИК при тестировании как многих определённых видов, так и АМП. По этой причине в нашем исследовании только штаммы двух видов (*C. parapsilosis* и *C. albicans*) протестированы на чувствительность к шести АМП си-

Таблица 6

Резистентность штаммов *E. coli* к АМП

AMI	R		
АМП	n=581	%	
Азтреонам	205	35.3	
Амикацин	41	7.1	
Ампициллин	496	85.4	
Амоксициллин/клавулановая кислота	342	58.9	
Ампициллин/сульбактам	261	44.9	
Гентамицин	159	27.4	
Имипенем	21	3.6	
Колистин	10	1.7	
Левофлоксацин	303	52.2	
Меропенем	37	6.4	
Пиперациллин/тазобактам	106	18.2	
Тигециклин	482	83.0	
Тобрамицин	159	27.4	
Триметоприм/сульфаметоксазол	363	62.5	
Фосфомицин	35	6.0	
Цефепим	296	51.0	
Цефотаксим	335	57.7	
Цефтазидим	286	49,3	
Цефтазидим/авибактам	36	6.2	
Цефтолозан/тазобактам	93	16.0	
Цефтриаксон	343	59.0	
Ципрофлоксацин	276	47.5	
Эртапенем	120	20.7	

стемного действия. Наиболее высокая резистентность для $C.\ albicans$ выявлена к микафунгину. Единственный антифунгальный АМП, к которому чувствительны $100\%\ C.\ albicans$ - анидулафунгин. Все штаммы $C.\ parapsilosis$ чувствительны ко всем протестированным антифунгальным АМП (табл. 10).

Карбапенемазы у приоритетных возбудителей ИСМП у онкологических больных определены для штаммов, резистентных in vitro к меропенему (для

Р. aeruginosa) и при МИК>0,125 (для Enterobacterales) (табл. 11). Для штаммов Р. aeruginosa выявлены карбапенемазы класса В (металло-бета-лактамазы), в основном тип VIM, и в единичных случаях - IMP-1 и NDM. Для штаммов Е. coli характерны различные типы карбапенемаз, в одном случае выявлены сразу два типа - KPC и NDM - у одного и того же изолята. Среди штаммов Е. coli продуценты карбапенемаз выявлялись реже всего. Основная доля карбапенемаз обнаружена у штаммов К. pneumoniae, чаще

Таблица 7 Резистентность штаммов *P. aeruginosa* к АМП

ANTI	R		
АМП	n=317	%	
Азтреонам	86	27.1	
Амикацин	47	14.8	
Имипенем	136	42.9	
Колистин	11	3.5	
Левофлоксацин	180	56.7	
Меропенем	91	28.7	
Пиперациллин/тазобактам	119	37.5	
Тобрамицин	92	29.0	
Цефепим	143	45.1	
Цефтазидим	155	48.9	
Цефтазидим/авибактам	56	17.7	
Цефтолозан/тазобактам	33	10.4	
Ципрофлоксацин	203	64.0	

всего тип ОХА-48 один или в сочетании с NDM или KPC.

На рис. 2 показана частота обнаружения карбапенемаз у штаммов, резистентных *in vitro* к карбапенемам. Карбапенемазы у грамотрицательных палочек в целом выявлены в 53,7% случаев. Для *K. pneumoniae* обнаружено статистически значимое преобладание штаммов,

продуцирующих карбапенемазы (88,8% против 11,2%, соответственно, p<0,0001). Для P. aeruginosa и E. coli напротив, пока статистически значимо чаще определяются штаммы, не вырабатывающие карбапенемазы (81,9% против 53,7% и 89,7% против 10,3%, соответственно, p<0,0001).

Резистентность *S. aureus* к АМП

Таблица 8

	R	R			
АМП	n=193	%			
Бензилпенициллин	177	91.7			
Ванкомицин	6	3.2			
Гентамицин	19	9.8			
Даптомицин	1	0.5			
Клиндамицин	37	19.2			
Левофлоксацин	9	4.7			
Линезолид	1	0.5			
Моксифлоксацин	6	3.1			
Оксациллин	22	11.4			
Рифампицин	82	42.5			
Тигециклин	4	2.1			
Тейкопланин	7	3.6			
Тобрамицин	12	6.2			
Триметоприм/сульфаметоксазол	2	1.0			
Фосфомицин	4	2.1			
Фузидиевая кислота	0	0			
Цефтаролин	0	0			
Ципрофлоксацин	8	4.1			
Эритромицин	31	16.1			

Резистентность штаммов Enterococcus spp. к АМП

Таблица 9

E. faecalis					
АМП	R	R			
AMII	n=234	%			
Ампициллин	7	3.0			
Ванкомицин	10	4.3			
Гентамицин, высокий уровень (синергия)	42	17.9			
Имипенем	24	10.5			
Линезолид	1	0.4			
Тигециклин	2	0.9			
Тейкопланин 7					
Ципрофлоксацин	106	45.3			
E. faecium					
АМП	R	R			
AMI	n=245	0/0			
Ампициллин	216	88.2			
Ванкомицин	114	46.5			
Гентамицин, высокий уровень (синергия)	156	63.7			
Имипенем	215	87.8			
Пинезолид					
Тигециклин	5 2.0				
Тейкопланин	104	42.4			
Ципрофлоксацин	232	232 94.7			

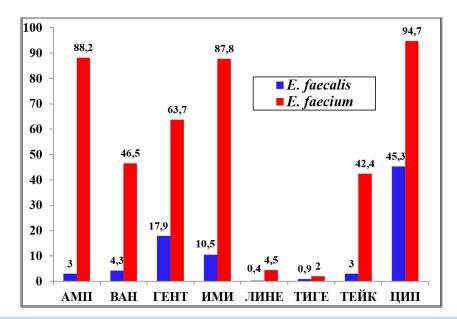


Рис. 1. Резистентность штаммов *E. faecalis* и *E. faecium* (в %). АМП – ампициллин, ВАН – ванкомицин, ГЕНТ – гентамицин, ИМИ – имипенем, ЛИНЕ – линезолид, ТИГЕ – тигециклин, ТЕЙК – тейкопланин, ЦИПР – ципрофлоксацин.

Таблица 10 Резистентность штаммов *Candida* spp. к антифунгальным АМП, % (EUCAST E.Def 7.3, E.Def 9.4 and E.Def 11.0 procedures, Version 3.0, valid from 2022-01-18)

Вид Candida	Всего штаммов	Амфотерицин В	Флуконазол	Вориконазол	Позаконазол	Анидулафунгин	Микафунгин
C. albicans	172	0,6	12,8	6,4	0,6	0	35,6
C.glabrata	67	0	17,9	Н/д*	Н/д	0	1,5
C. tropicalis	16	0	12,5	6,2	0	0	Н/д
C. krusei	8	0	Н/д**	Н/д	Н/д	0	Н/д
C. parapsilosis	5	0	0	0	0	0	0
C. dubliniensis	4	25,0	0	0	0	Н/д	Н/д

Примечание. * - H/д - нет данных в связи с отсутствием критериев оценки значений МИК; **- H/д - нет данных, т.к. у C. krusei имеется природная резистентность к флуконазолу.

Обсуждение. За последние 20 лет у онкологических больных во всем мире частота ИСМП бактериальной этиологии, сместилась от грамположительных возбудителей к грамотрицательным [2, 31], что не противоречит и нашими данными. Согласно полученным данным, определены два приоритетных возбудителя инфекционных осложнений у взрослых онкологических больных - К. pneumoniae и Е. coli, тогда как Р. aeruginosa выделена в два раза реже. В нашем стационаре A. baumannii, также, как и S. maltophilia, в настоящее время составляют немногим более 3% каждого вида. Согласно нашим данным, частота выделения возбудителей ИСМП у онкологических больных хирургического и нехирургического профилей отличается. Статистически значимо чаще у пациентов хирургического профиля регистрировались грамотрицательные палочки (особенно, P. aeruginosa) и C. albicans. У пациентов нехирургического профиля статистически значимо чаще выделялись грамположительные кокки (с преобладанием S. aureus) и виды Candida, не относящиеся к C. albicans. Методы специфического лечения в этих двух группах онкологических больных отличаются, что объ-

ясняет подобные различия.

Глобальный рост резистентности возбудителей ИСМП отмечается во всем мире и рассматривается как серьезная угроза неэффективности использования АМП для профилактики и лечения бактериальных инфекций у онкологических больных [13, 30]. Резистентность возбудителей ИСМП к АМП у онкологических больных часто связана с повышенной восприимчивостью к инфекциям, является серьёзной угрозой применения передовых технологий в терапии онкологических заболеваний. Постоянное наблюдение за этой популяцией больных, касающееся состояния резистентности возбудителей ИСМП, является важнейшей задачей [11]. До недавнего времени имелись лишь ограниченные данные о частоте встречаемости видов возбудителей ИСМП, их резистентности к АМП и её характере у онкологических больных [2].

В нашем исследовании мы сравнили уровень резистентности к АМП штаммов, выделенных в Национальном медицинском исследовательском центре онкологии им. Н.Н. Блохина Минздрава РФ (НМИЦ) и по Российской Федерации в целом (РФ) [32]. Наиболь-

шие проблемы, связанные с резистентностью к АМП у взрослых больных при ИСМП в НМИЦ, и в РФ связаны с K. pneumoniae. За исключением колистина и цефтазидим/авибактама с низким уровнем резистентности в обеих группах, к остальным АМП в нашей клинике резистентность ниже в сравнении с данными по РФ.

Сравнительные данные по уровню резистентности

E. coli к АМП у взрослых больных при ИСМП в НМИЦ и по России показали, что наблюдается достаточно разнообразная картина в отношении рассмотренных АМП, но в обоих случаях отмечена наименьшая доля резистентности к колистину.

Сравнительные данные по уровню резистентности *P. aeruginosa* к АМП у взрослых больных при ИСМП

Таблица 11 Карбапенемазы, выявленные у штаммов энтеробактерий и синегнойных палочек, резистентных *in vitro* к карбапенемам

Исследованные штаммы	Количество штаммов - 341 (абс./%)
Карбапенемазы обнаружены	183 /53,7
Карбапенемазы не обнаружены	158/46,3
P. aerugin	osa
Исследовано штаммов	105
Обнаружены карбапенемазы, всего	19/18,1
В том числе IMP-1	2 /1,9
VIM	16 /15,2
NDM	1/1,0
Карбапенемазы не обнаружены	86 (81,9)
K. pneumo	niae
Исследовано штаммов	178
Обнаружены карбапенемазы, всего	158 (88,8)
В том числе КРС	19 (10,7)
OXA-48	53 (29,8)
NDM	27 (15,2)
OXA-48 +NDM	41 (23,0)
OXA-48 + KPC	13 (7,3)
KPC + NDM	5 (2,8)
Карбапенемазы не обнаружены	20 (11,2)
E. coli	
Исследовано штаммов	58
Обнаружены карбапенемазы, всего	6 (10,3)
В том числе, КРС	1 (1,7)
OXA-48	1 (1,7)
NDM	3 (5,2)
KPC + NDM	1 (1,7)
Карбапенемазы не обнаружены	52 (89,7)

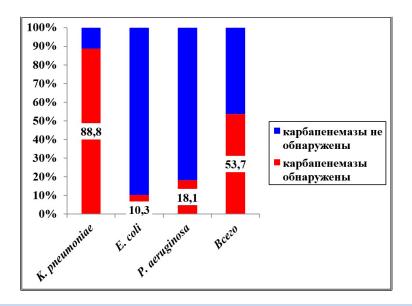


Рис. 2. Частота обнаружения карбапенемаз (в %) у штаммов, резистентных іп vitro к карбапенемам.

в НМИЦ и в Российской Федерации показали низкий уровень резистентности в обеих группах только к колистину, к остальным АМП в нашей клинике резистентность к большинству АМП (кроме ципрофлоксацина) ниже в сравнении с данными по РФ. Резистентность к меропенему примерно в два раза ниже, чем к имипенему. У грамотрицательных бактерий распространены механизмы устойчивости, не связанные с продукцией бета-лактамаз, которые ограничивают концентрацию АМП внутри бактериальной клетки. Снижение проникновения в клетку может быть вызвано мутациями генов, кодирующих белки пориновых каналов. Резистентность может возникать из-за усиления оттока $AM\Pi$ из клетки (эффлюкс) у Enterobacterales или у P. aeruginosa, и этот механизм часто сочетается с продукцией различных типов бета-лактамаз у одного и того же изолята [25]. Более высокий уровень резистентности к имипенему у изолятов *P. aeruginosa* в НМИЦ возможно, объясняется сочетанием нескольких механизмов резистентности: мутациями генов, кодирующих белки пориновых каналов и продукцией бета-лактамаз, что описано и в зарубежной литературе [20, 33].

Резистентность штаммов *S. maltophilia* к АМП в нашей клинике составила 14,1%, что не отличается от данных по РФ (14,5%).

А. baumannii, как и прочие грамотрицательные палочки, согласно нашим данным, отличаются низкой резистентностью к колистину. В нашей клинике штаммы A. baumannii имеют более высокий уровень резистентности к меропенему, нежели в Российской Федерации. Можно предположить, что в НМИЦ резистентность изолятов А. baumannii к меропенему обусловлена сочетанием нескольких механизмов, что наблюдается и в других географических регионах РФ [34]. По данным мировой литературы, наиболее частым механизмом резистентности для штаммов А. baumannii является усиление эффлюкса, что не исключает сочетания этого механизма с продукцией бета-лактамаз у нозокомиальных штаммов [35]. Для таких неферментирующих грамотрицательных бактерий, как P. aeruginosa усиление эффлюкса АМП из клетки также важный механизм резистентности к АМП [36].

Сравнительные данные по уровню резистентности *S. aureus* к АМП у взрослых больных при ИСМП в НМИЦ и в Российской Федерации показали, что основные различия в том, что в нашем Центре весьма высокая доля резистентных штаммов к рифампицину, констатировано появление резистентных штаммов к ванкомицину и линезолиду, чего не наблюдается в целом по РФ.

Сравнительные данные по уровню резистентности Enterococcus spp. к АМП у взрослых онкологических больных при ИСМП в НМИЦ и в РФ демонстрируют, что в отношении E. faecalis в нашем стационаре ситуация по уровню резистентности более благополучная в сравнении с данными по РФ. Резистентность E. faecium к большинству АМП достаточно высокая в обоих случаях.

Карбапенемазы типа VIM (класс металло-бета-лактамаз) являются наиболее распространённым типом карбапенемаз у *P. aeruginosa* [37]. Карбапенемазы типа VIM во многих географических регионах мира регистрируются чаще, чем металло-бета-лактамазы типа IMP, они, по данным зарубежных авторов, составляют меньшинство всех карбапенемаз у возбудителей, устой-

чивых к карбапенемам [38]. В Российской Федерации в последние годы регистрируются штаммы *P. aeruginosa*, продуцирующие преимущественно металло-бета-лактамазы типа VIM, причем, более чем в 4 раза чаще, нежели в НМИЦ (72,2 % против 15,2 %). Ассоциаций типов карбапенемаз, которые мы определяли в нашем исследовании, у *P. aeruginosa*, ни у нас в клинике, ни в РФ пока не зарегистрировано. В НМИЦ, кроме типа VIM, выявлены изоляты *P. aeruginosa*, продуцирующие другие типы металло-бета-лактамаз - NDM (1%) и IMP (1,9 %).

Карбапенемазы типа NDM, по данным зарубежной литературы, составляют более 44 % всех зарегистрированных изолятов грамотрицательных палочек порядка Enterobacterales, продуцирующих металло-бета-лактамазы [37]. E. coli отличается наиболее низкой продукцией карбапенемаз среди всех приоритетных возбудителей ИСМП в НМИЦ. По РФ наблюдается небольшая доля таких изолятов. В основном и в нашем исследовании (5,2 %), и в РФ (71 %) в последние годы преобладают штаммы *E. coli* с карбапенемазами типа NDM. Тип КРС примерно в 10 раз реже регистрируется в НМИЦ (1,7 %) нежели в РФ (16,1 %), что наблюдается и в отношении типа ОХА-48 (1,7 % против 17,9 %, соответственно). Ассоциации карбапенемаз КРС+NDM в НМИЦ (1,7 %) регистрируются реже, чем в РФ (6,5%), сочетание типов NDM+OXA-48 в нашей клинике вообще пока не выявлено в отличие от данных по РФ (3,2 %).

В Российской Федерации штаммы К. pneumoniae, продуцирующие карбапенемазы ОХА-48, к 2021 году стали регистрироваться значительно реже (72,0 % против 33,9 %), карбапенемазы NDM и KPC к 2021 году, напротив, чаще (22,1% против 31,1 % и 4,0 % против 9,3 %, соответственно). Появление штаммов, продуцирующих карбапенемазы типа КРС, представляют серьёзную проблему, поскольку такие изоляты не только резистентны к большинству АМП класса бета-лактамов, но часто обладают МЛУ, поскольку они дополнительно кодируют множество других генов устойчивости, что создает ситуацию, когда невозможно выбрать АМП для эффективной терапии [25]. По сравнению с общей картиной по Российской Федерации, в НМИЦ доля изолятов К. pneumoniae, продуцирующих карбапенемазы ОХА-48 и NDM, почти в два раза меньше, а КРС примерно такая же. Серьёзные проблемы можно прогнозировать ввиду появления у одного и того же штамма нескольких типов карбапенемаз. В целом по Российской Федерации для К. pneumoniae доля ассоциации NDM+OXA-48 увеличилась с 1,8 % в 2018 году до 19,2 % в 2021 году, в НМИЦ такие клинические изоляты выделяются чаще (23,0%). В НМИЦ ассоциации типов NDM+КРС составляют небольшую долю (2,8%), что в два раза выше, чем в целом по России (0 % в 2018 году и 1,2 % к 2021 году).

Доля штаммов грамотрицательных палочек, продуцирующих несколько типов карбапенемаз, растёт, что создает трудности при выборе АМП для терапии инфекционных осложнений.

Мониторинг, проведённый нами в 2017-2019 годах, показал, что основными видами грамотрицательных палочек у онкологических больных в этот период являлись *E. coli* (26,2%), *A. baumannii* (22,0%), *K. pneumoniae* (18,6%), *P. aeruginosa* (14,0%). В настоящее время отмечается снижение частоты выделения всех

трёх возбудителей, кроме K. pneumoniae, доля которой увеличилась до 21,8%. Уменьшилась доля изолятов, резистентных к меропенему (кроме E. coli, в отношении которой отмечается некоторое увеличение резистентности к меропенему с 4,5% до 6,4%). Частота выделения штаммов, продуцирующих карбапенемазы, к настоящему времени в целом снизилась с 73,8% до 53,7%, главным образом за счет P. aeruginosa [39].

Изменения в таксономической структуре патогенов, в распространении различных механизмов резистентности - последствия изменения стратегии и тактики в области профилактики, лечения инфекционных осложнений, применения АМП. Активное изучение проблемы антимикробной резистентности с появлением новых методов, таких, как молекулярно-генетические, расширяют горизонты, открывают новые пути для исследования. Изучение такого феномена, как гетерорезистентность в отношении разных АМП, которая встречается среди многих клинически значимых изолятов, особенно с МЛУ, может внести свой вклад в понимание механизмов резистентности к АМП и требует активного изучения [40].

Заключение. Во всем мире отмечается глобальное увеличение уровня резистентности бактерий к АМП, особенно в популяции иммунокомпрометированных пациентов, к которым относятся и онкологические больные. Ещё более усугубляет эту ситуацию растущая доля штаммов грамотрицательных палочек, продуцирующих несколько типов карбапенемаз, что в комплексе создает значительные трудности при выборе АМП для терапии инфекционных осложнений и негативно отражается на эффективности лечения не только инфекционных осложнений у данной популяции больных, но и основного заболевания.

ЛИТЕРАТУРА (ПП. 1-19, 24-31, 33, 35,37, 38 СМ. REFERENCES)

- Сидоренко С.В., Тишков В.И. Молекулярные основы резистентности к антибиотикам. Успехи биологической химии. 2004; 44:263-306.
- Шкурат М.А., Покудина И.О., Батталов Д.В. Резистентность микроорганизмов к антимикробным препаратам. Электронное периодическое издание ЮФУ «Живые и биокосные системы». 2014;
 URL: http://jbks.ru/archive/issue10/article-10.
- 22. Гусаров В.Г., Нестерова Е.Е., Лашенкова Н.Н., Петрова Н.В., Силаева Н.А., Тертицкая А.Б. и другие. Изменение антибиотикорезистентности нозокомиальной микрофлоры: результаты внедрения стратегии контроля антимикробной терапии в многопрофильном стационаре. Эпидемиология и инфекционные болезни. 2015; 20(5):11-8. DOI: 10.17816/EID40946.
- Ромашов О.М., Ни О.Г., Быков А.О., Круглов А.Н., Проценко Д.Н., Тюрин И.Н. Оценка резистентности микроорганизмов многопрофильного стационара и модернизация схем антимикробной терапии в условиях пандемии COVID-19-инфекции. Клиническая микробиология и антимикробная химиотерапия. 2021; 23(3): 293-303. DOI: 10.36488/cmac.2021.3.293-303.
- 32. Онлайн-платформа AMRmap: https://amrmap.ru. Доступно с 2016 г.
- 34. Гординская Н.А., Борискина Е.В., Шкуркина И.С. Фенотип антибиотикорезистентности и частота обнаружения карбапенемаз у *Acinetobacter baumannii*, выделенных в стационарах г. Нижнего Новгорода. *Клиническая лабораторная диагностика*. 2023; 68(3):157-61. DOI: 10.51620/0869-2084-2-23-68-3-157-161.
- Иванов М.Э., Фурсова Н.К., Потапов В.Д. Суперсемейства эффлюксных насосов Pseudomonas aeruginosa (обзор литерату-

- ры). Клиническая лабораторная диагностика. 2022; 67(1):53-8. DOI: 10.51620/0869-2084-2022-67-1-53-58.
- 39. Багирова Н.С. Петухова И.Н., Григорьевская З.В., Дмитриева Н.В., Терещенко И.В. Проблемы устойчивости к противомикробным препаратам в онкологическом стационаре: диагностика продукции карбапенемаз, генотипы нозокомиальных штаммов А. baumannii, Р. aeruginosa и К. pneumoniae. Лабораторная служба. 2020; 9(4):17-25. DOI: 10.17116/labs2020904117.
- Гостев В.В., Сидоренко С.В. Гетерорезистентность: клиническое значение и методы выявления (обзор литературы). Клиническая лабораторная диагностика. 2023; 68(7): 418-27. DOI: 10.51620/0869- 2084-2023-68-7-418-427.

REFERENCES

- Rolston K.V. Infections in cancer patients with solid tumors: a review. Infect. Dis. Ther. 2017; 6: 69-83. DOI: 10.1007/s40121-017-0146-1.
- Jiang A.M., Shi X., Liu N., Gao H., Ren M.D., Zheng X.Q. et al. Nosocomial infections due to multidrug-resistant bacteria in cancer patients: a six-year retrospective study of an oncology Center in Western China. *BMC Infect. Dis.* 2020 Jun 29; 20(1):452. DOI: 10.1186/ s12879-020-05181-6.
- Bhat S., Muthunatarajan S., Mulki S.S., Bhat K.A., Kotian K.H. Bacterial infection among cancer patients: analysis of isolates and antibiotic sensitivity pattern. *Int. J. Microbiol.* 2021; 8883700. DOI: 10.1155/2021/8883700.
- Zheng Y., Chen Y., Yu K., Yang Y., Wang X., Yang X. et al. Fatal Infections Among Cancer Patients: A Population-Based Study in the United States. *Infect. Dis. Ther.* 2021 Jun; 10(2):871-95. DOI: 10.1007/s40121-021-00433-7.
- Zembower T.R. Epidemiology of infections in cancer patients. Cancer Treat. Res. 2014; 161:43-89. DOI: 10.1007/978-3-319-04220-6_2.
- O'Dowd A. Death certificates should record antimicrobial resistance as cause of deaths, says CMO. BMJ. 2018; 362:k3832. DOI: 10.1136/k3832.
- Ye M., Gu X., Han Y., Jin M., Ren T. Gram-negative bacteria facilitate tumor outgrowth and metastasis by promoting lipid synthesis in lung cancer patients. J. Thorac. Dis. 2016; 8(8):1943-55. DOI: 10.21037/ itd 2016 06 47
- 8. Sun M., Bai Y., Zhao S., Liu X., Gao Y., Wang L., Liu B. et al. Gramnegative bacteria facilitate tumor progression through TLR4/IL-33 pathway in patients with non-small-cell lung cancer. *Oncotarget*. 2018; 9(17):13462-73. DOI: 10.18632/oncotarget.24008.
- Delgado A., Guddati A.K. Infections in Hospitalized Cancer Patients. World J. Oncol. 2021 Dec; 12(6):195-205. DOI: 10.14740/wjon1410.
- Rice L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008; 197: 1079– 81. DOI: 10.1086/533452.
- Nanayakkara A.K., Boucher H.W., Fowler V.G., Jezek A., Outterson K., Greenberg D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. *CA Cancer J. Clin.* 2021; 71: 488–504. DOI: 10.3322/caac.21697.
- Worku M., Belay G., Tigabu A. Bacterial profile and antimicrobial susceptibility patterns in cancer patients. *PLoS One*. 2022; 17:e0266919. DOI: 10.1371/journal.pone.0266919.
- 13. Yusuf K., Sampath V., Umar S. Bacterial infections and cancer: exploring this association and its implications for cancer patients. *Int. J. Mol. Sci.* 2023 Feb 4; 24(4):3110. DOI: 10.3390/ijms24043110.
- Katip W., Uitrakul S., Oberdorfer P. Clinical outcomes and nephrotoxicity of colistin loading dose for treatment of extensively drugresistant. *Infect. Drug Resist.* 2017; 10:293–8. DOI: 10.2147/IDR. S144314.
- 15. Moubareck C.A., Halat D.H. Insights into *Acinetobacter baumannii*: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. *Antibiotics*. 2020; 9:119. DOI: 10.3390/antibiotics9030119.
- Oliveira C.S., Torres M.T., Pedron C.N., Andrade V.B., Silva P.I., Silva F.D. et al. Synthetic peptide derived from scorpion venom displays minimal toxicity and anti-infective activity in an animal model. *ACS Infect. Dis.* 2021; 7:2736–45. DOI: 10.1021/acsinfecdis.1c00261.
- Ramirez D., Giron M. Enterobacter Infections. 2023 Jun 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 32644722.

- Awadh H., Chaftari A.M., Khalil M., Fares J., Jiang Y., Deeba R. et al. Management of enterococcal central line-associated bloodstream infections in patients with cancer. *BMC Infect. Dis.* 2021; 21: 643. DOI: 10.1186/s12879-021-06328-9.
- Said M.S., Tirthani E., Lesho E. Enterococcus Infections. 2022 May 2.
 In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 33620836.
- Sidorenko S.V., Tishkov V.I. Molecular basis of antibiotic resistance. *Uspekhi biologicheskoy khimii*. 2004; 44:263-306. (in Russian)
- Shkurat M.A., Pokudina I.O., Battalov D.V. Resistance of microorganisms to antimicrobial drugs. Electronic periodical publication of the Southern Federal University "Zhivye I biokosnye sistemy". 2014; 10. URL: http://jbks.ru/archive/issue10/article-10. (in Russian)
- Gusarov V.G., Nesterova E.E., Lashenkova N.N., Petrova N.V., Silaeva N.A., Tertitskaya A.B. et al. Changes in antibiotic resistance of nosocomial microflora: results of implementing a strategy for monitoring antimicrobial therapy in a multidisciplinary hospital. *Epidemiologiya i infektsionnye bolezni*. 2015; 20(5):11–8. DOI: 10.17816/EID40946. (in Russian)
- Romashov O.M., Ni O.G., Bykov A.O., Kruglov A.N., Procenko D.N., Tyurin I.N. Assessing the resistance of microorganisms in a multidisciplinary hospital and modernizing antimicrobial treatment regimens in the context of the COVID19 infection pandemic. *Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya*. 2021; 23(3):293-303. DOI: 10.36488/cmac.2021.3.293-303. (in Russian)
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report). Accessed February 25; 2021. URL: cdc.gov/drugresistance/biggest-threats.html.
- Bush K., Bradford P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020 Feb 26; 33(2):e00047-19. DOI: 10.1128/CMR.00047-19.
- World Health Organization. Global action plan on antimicrobial resistance. 2021. Accessed February 25, 2021. URL: who.int/publi cations/i/item/97892 41509763.
- Otter J.A., Burgess P., Davies F., Mookerjee S., Singleton J., Gilchrist M. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: an economic evaluation from a hospital perspective. Clin. Microbiol. Infect. 2017; 23:188–96. DOI: 10.1016/j. cmi.2016.10.005.
- Hobson C.A., Pierrat G., Tenaillon O., Bonacorsi S., Bercot B., Jaouen E. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob. Agents Chemother. 2022 Sep 20; 66(9):e0044722. DOI: 10.1128/aac.00447-22
- Teillant A., Gandra S., Barter D., Morgan D.J., Laxminarayan R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: a literature review and modelling study. *Lancet Infect. Dis.* 2015; 15:1429-37. DOI:

- 10.1016/S1473-3099(15)00270-4.
- Danielsen A.S., Franconeri L., Page S., Myhre A.E., Tornes R.A., Kacelnik O., Clinical outcomes of antimicrobial resistance in cancer patients: a systematic review of multivariable models. *BMC Infect. Dis.* 2023 Apr 18; 23(1):247. DOI: 10.1186/s12879-023-08182-3.
- Puerta-Alcalde P., Cardozo C., Suárez-Lledó M., Rodríguez-Núñez O., Morata L., Fehér C. et al. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship deescalation strategies. *Clin. Microbiol. Infect.* 2019 Apr; 25(4):447-53. DOI: 10.1016/j.cmi.2018.07.026.
- 32. AMRmap online platform: https://amrmap.ru. Available from 2016. (in Russian)
- Breidenstein E.B., de la Fuente-Nunez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8):419-26. DOI: 10.1016/j.tim.2011.04.005.
- Gordinskaya N.A., Boriskina E.V., Shkurkina I.S. Phenotypes of antibiotic resistance and frequency of detection of carbapenemases in *Acinetobacter baumannii* isolated in hospitals of Nizhny Novgorod. *Klinicheskaya Laboratornaya Diagnostika*. 2023; 68(3):157-61. DOI: 10.51620/0869-2084-2023-68-3-157-161. (in Russian)
- Temgoua F.T.D., Wu L. Mechanisms Efflux pumps of Acinetobacter baumannii (MDR): increasing resistance to antibiotics. Journal of Biosciences and Medicines. 2019; 7:48-70. DOI: 10.4236/ jbm.2019.71006.
- Ivanov M.E., Fursova N.K., Potapov V.D. Pseudomonas aeruginosa efflux pump superfamily (review of literature). Klinichescheskaya Laboratornaya Diagnostika 2022; 67(1): 53-8. DOI: 10.51620/0869-2084-2022-67-1-53-58. (in Russian)
- Kazmierczak K.M., Rabine S., Hackel M., McLaughlin R.E., Biedenbach D.J., Bouchillon S.K. et al. Multiyear, multinational survey of the incidence and global distribution of metallo-lactamaseproducing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016; 60:1067–78. DOI: 10.1128/ AAC .02379-15.
- Castanheira M., Deshpande L.M., Mendes R.E., Canton R., Sader H.S., Jones R.N. Variations in the occurrence of resistance phenotypes and carbapenemase genes among *Enterobacteriaceae* isolates in 20 years of the SENTRY antimicrobial surveillance program. *Open Fo*rum Infect. Dis. 2019; 6:S23–S33. DOI: 10.1093/ofid/ofy347.
- Bagirova N.S. Petukhova I.N., Grigorievskaya Z.V., Dmitrieva N.V., Tereshhenko I.V. Problems of antimicrobial resistance in an oncology hospital: diagnostics of carbapenemase production, genotypes of nosocomial strains of *A. baumannii, P. aeruginosa* and *K. pneumoniae. Laboratornaya sluzhba.* 2020; 9(4):17-25. DOI: 10.17116/labs2020904117. (in Russian)
- Gostev V.V., Sidorenko S.V. Heteroresistance: clinical implications and detection methods (review of literature). *Klinicheskaya Labo*ratornaya Diagnostika. 2023; 68 (7):418-27. DOI: 10.51620/0869-2084-2023-68-7-418-427. (in Russian)