Список литературы
1. Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.Р. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015;112(18):5649–54.
2. Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–33.
3. Устойчивость к противомикробным препаратам [Электронный ресурс]. Сайт Всемирной организации здравоохранения (ВОЗ) https://www.who.int/ru/news-room/fact-sheets/detail/antimicrobialresistance (дата обращения 27.08.2019).
4. Holmes A.H., Moore L.S., Sundsfjord A., Sundsfjord A., Steinbakk M., Regmi S., Karkey A., et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176–87.
5. Andersson D.I., Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014;12(7):465–78.
6. Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015;13(1):42–51.
7. Voulgari E., Poulou A., Koumaki V., Tsakris A. Carbapenemaseproducing Enterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back? Future Microbiol. 2013;8(1):27–39.
8. Lynch J.P. 3rd, Clark N.M., Zhanel G.G. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum beta-lactamases and carbapenemases). Expert Opin. Pharmacother.
2013;14(2):199–210.
9. Morrissey I., Oggioni M.R., Knight D., Curiao T., Coque T., Kalkanci A., Martinez J.L. Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. (2014). Public Library of Science ONE 9(1): e86669.
10. Logre E., Denamur E., Mammeri H. Contribution to Carbapenem Resistance and Fitness Cost of DcuS/DcuR, RcsC/RcsB, and YehU/YehT Two-Component Systems in CTX-M-15-Producing Escherichia coli. Microb. Drug Resist. 2019 Oct 9. doi: 10.1089/mdr.2019.0027
11. Martinez J.L. General principles of antibiotic resistance in bacteria. Drug Discovery Today: Technologies. 2014;1: 33-9.
12. Boto L., Martinez J.L. Ecological and temporal constraints in the evolution of bacterial genomes. Genes. 2011;2:804–28.
13. Hiltunen T., Virta M., Laine A.L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017 Jan 19;372(1712). pii: 20160039. Review. PubMed PMID: 27920384; PubMed Central PMCID: PMC5182435.
14. Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. Устойчивость микроорганизмов к антибиотикам: резистома, её объём, разнообразие и развитие. Антибиотики и химиотерапия.
2013; 58 (5-6): 38-48.
15. Canton R., Gonzalez-Alba J.M., Galan J.C. CTX-M Enzymes: Origin and Diffusion. Frontiers in Microbiology. 2012;3:110.
16. Землянко О.М., Рогоза Т.М., Журавлева Г.А. Механизмы множественной устойчивости бактерий к антибиотикам. Экологическая генетика. 2018; (3): 4-10.
17. Дубилей С.А., Игнатова А.Н., Шемякин И.Г. Молекулярно-генетические методы идентификации лекарственной устойчивости Mycobacterium tuberculosis. Молекулярная генетика, микробиология и вирусология. 2005; (1): 3-4.
18. Randall C.P., Mariner K.R., Chopra I., O’Neill A.J. The target of daptomycin is absent from Escherichia coli and other Gram-negative pathogens. Antimicrob. Agents Chemother. 2013;57(1):637–9.
19. Zhu L., Lin J., Ma J., Cronan J.E., Wang H. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoylacyl carrier protein reductase. Antimicrob. Agents Chemother.
2010;54(2):689–98.
20. Mwangi J., Hao X., Lai R., Zhang Z.Y. Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research. 2019. doi: 10.24272/j.issn.2095-8137.2019.062
21. Olicares J., Bernardini A., Garcia-Leon G., Corona F., Sanchez M.B., Martinez J.L. The intrinsic resistome of bacterial pathogens. Frontiers in Microbiology. 2013 Apr 30;4:103.
22. Hernando-Amado S., Sanz-Garcia F., Martinez J.L. Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa. Molecular biology and evolution. 2019 Oct 1;36(10):2238-51. doi: 10.1093/molbev/msz144 PubMed PMID:31228244
23. Karkman A., Do T.T., Walsh F., Virta M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends in microbiology. 2018 Mar;26(3):220- 8. doi: 10.1016/j.tim.2017.09.005. Review. PubMed PMID:
29033338.
24. Forsberg K.J., Reyes A., Wang B., Selleck E.M., Sommer M.O., Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337(6098):1107–11.
25. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine. 2017;12:1227–49.
26. Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–5.
27. Allison K.R., Brynildsen M.P., Collins J.J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011;473(7346):216–20.
28. Grant S.S., Kaufmann B.B., Chand N.S., Haseley N., Hung D.T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(30):12147–52.
29. Martinez J.L. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in microbiology. 2011;2:265.
30. Cabello F.C., Godfrey H.P., Tomova A., Ivanova L., Dolz H., Millanao A., Buschmann A.H. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and
human health. Environmental microbiology. 2013;15(7):1917–42.
31. Olivares J., Alvarez-Ortega C., Linares J.F., Rojo F., Kohler T., Martinez J.L. Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environmental microbiology. 2012;14(8):1968–81.
32. Gullberg E., Cao S., Berg O.G., Ilback C., Sandegren L., Hughes D., Andersson D.I. Selection of resistant bacteria at very low antibiotic concentrations. Public Library of Sciences. 2011;7(7):e1002158.
33. Martinez J.L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Frontiers in microbiology. 2012;3:1
34. Martinez J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proceedings. Biological sciences. 2009;276(1667):2521– 30.
35. Martinez J.L., Sanchez M.B., Martinez-Solano L., Hernandez A., Garmendia L., Fajardo A. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. Federation of European Microbiological Societies. 2009;33(2):430–49.
36. Bush K. Proliferation and significance of clinically relevant betalactamases. New York Academy of Sciences 2013;1277:84–90.
37. Novais A., Comas I., Canton R., Coque T.M., Moya A., GonzalezCandelas F., Baquero F., Galan J.C. Evolutionary trajectories of beta-lactamase CTX-M-1 cluster enzymes: predicting antibiotic resistance. Public Library of Science. 2010;6(1):e1000735.
38. Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2015. 56:20-51.
39. Baltz R.H. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 2016; 33:507-13.
40. Projan S. J. Why is big pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 2013. 6:427-30.