ВЛИЯНИЕ ЭКЗОГЕННЫХ И ЭНДОГЕННЫХ ФАКТОРОВ НА КАЧЕСТВО ПРЕАНАЛИТИЧЕСКОГО ЭТАПА ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЙ (ОБЗОР ЛИТЕРАТУРЫ)
ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
Представлен обзор литературы по анализу влияния эндогенных и экзогенных факторов на качество преаналитического этапа лабораторных исследований. Показана значимость учета внешних и внутренних факторов влияния на образцы крови на преаналитическом этапе лабораторных исследований. Среди экзогенных рассмотрен ряд факторов: флеботомия, пробирки для образцов, транспортировка и хранение. На данном этапе существует ряд факторов способных существенно повлиять на результаты тестирования. Среди аспектов процесса флеботомии рассмотрены: подготовка персонала, контаминация дезинфектантами, диаметр игл, контаминация материалами игл. В обзоре рассмотрены возможные контаминации компонентами пробирок, а также важность выбора правильных антикоагулянтов и наполнителей. Транспортировка и хранение биологических образцов также может быть источником ошибок на преаналитическом этапе лабораторного тестирования. Проанализирована проблема определения стабильности аналитов при хранении, а также аспекты транспортировки образцов современными средствами. Среди эндогенных факторов рассмотрены: гемолиз, липемия, иктерричность, метаболизм клеток. Гемолиз относят к самым частым следствиям ошибок на преаналитическом этапе. Показана важность выбора способа идентификации гемолизированных пробирок и неоднородность смещений результатов в разных аналитических системах. Также в обзоре показано влияние различных классов липопротеинов на мутность образца, возможные преаналитические ошибки и воздействие на измерение аналитов. Показано возможное воздействие высоких концентраций билирубина на измерение аналитов. Также рассмотрен метаболизм некоторых клеток и его воздействие на образцы.
Об авторах
Санкт-Петербургский государственный педиатрический медицинский университет, Минздрава РФ; ГБУЗ Городская многопрофильная больница № 2 194100 Санкт-Петербург, Россия; 194354, Санкт-Петербург, Россия аспирант ФГБОУ ВО СПбГПМУ Минздрава РФ; врач КЛД СПб ГБУЗ «Городская многопрофильная больница № 2» dmi6141@gmail.com
Список литературы
Raman G., Avendano E., Chen M. Update on Emerging Genetic Tests Currently Available for Clinical Use in Common Cancers, in Technology Assessment Report. Rockville, MD: Agency for Healthcare Research and Quality; 2013.
Rohr U., Binder C., Dieterle T., Giusti F., Messina C., & Toerien E. et al. The Value of In Vitro Diagnostic Testing in Medical Practice: A Status Report. PLOS ONE. 2016; 11(3).
Lippi G., Banfi G., Church S., Cornes M., De Carli G., & Grankvist K. et al. Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE). Clinical Chemistry аnd Laboratory Medicine (CCLM). 2015; 53(3).
Lippi G., Cadamuro J. Novel Opportunities for Improving the Quality of Preanalytical Phase. A Glimpse to the Future? Journal оf Medical Biochemistry. 2017; 36(4): 293-300.
Simundic A. Preanalytical Phase — an updated review of the current evidence. Biochemia Medica. 2014; 6-6.
Steindel S. J., Howanitz P. J. Physician satisfaction and emergency department laboratory test turnaround time. Arch. Pathol. Lab. Med. 2001; 125: 863-71.
Ialongo C., Bernardini S. Phlebotomy, a bridge between laboratory and patient. Biochemia Medica. 2016; 26(1): 17-33.
Simundic A., Cornes M., Grankvist K., Lippi G., Nybo M., Kovalevskaya S. et al. Survey of national guidelines, education and training on phlebotomy in 28 European countries: an original report by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) working group for the preanalytical phase (WG-PA). Clin. Chem Lab. Med. 2013; 51(8):1585-93.
Simundic A., Church S., Cornes M., Grankvist K., Lippi G., Nybo M. et al. Compliance of blood sampling procedures with the CLSI H3-A6 guidelines: An observational study by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) working group for the preanalytical phase (WG-PRE). Clinical Chemistry аnd Laboratory Medicine (CCLM). 2015; 53(9): 1321-31.
Ковалевская С. Н., Хоровская Л. А., Петрова Н. Г. Процедура флеботомии для клинических лабораторных исследований перспективы совершенствования преаналитического этапа лабораторного процесса. Клиническая лабораторная диагностика. 2014; 59 (8): 61-4
Stankovic A., Smith S. Elevated Serum Potassium Values. Pathology Patterns Reviews. 2004; 121(1): 105-12.
Lippi G., Salvagno G., Montagnana M., Brocco G., Cesare Guidi G. Influence of the needle bore size used for collecting venous blood samples on routine clinical chemistry testing. Clinical Chemistry and Laboratory Medicine (CCLM). 2006; 44(8): 1009-14.
Prabhu S., Kazarian T., Hakobyan N., Jabbar F., Dunham T., Valentino I. Needles and needleless devices for infusion of anti-haemophilic factor concentrate: impact on protein structure and function. Haemophilia. 2006; 12(1): 58-61.
Cornelis R., Heinzow B., Herber R., Molin Christensen J., Poulsen O., Sabbioni E. et al. Sample Collection Guidelines for Trace Elements in Blood and Urine. Journal Of Trace Elements In Medicine And Biology. 1996; 10(2): 103-27.
Ashavaid T., Dandekar S., Keny B., Bhambhwani V. Influence of blood specimen collection method on various preanalytical sample quality indicators. Indian Journal of Clinical Biochemistry. 2008; 23(2): 144-9.
Chung H. J., Lee W., Chun S., Park H. I., Min W. K. Analysis of turnaround time by subdividing three phases for outpatient chemistry specimens. Annals of Clinical & Laboratory Science. 2009; 39(2): 144-9.
Miles R. Comparison of Serum and Heparinized Plasma Samples for Measurement of Chemistry Analytes. Clinical Chemistry. 2004; 50(9): 1704-6.
Er T., Tsai L., Jong Y., Chen B. Selected Analyte Values in Serum Versus Heparinized Plasma Using the SYNCHRON LX PRO Assay Methods/Instrument. Laboratory Medicine. 2006; 37(12): 731-2.
Oddoze C., Lombard E., Portugal H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clinical Biochemistry. 2012; 45(6): 464-9.
Kratz A., Stanganelli N., Van Cott E.M. A comparison of glass and plastic blood collection tubes for routine and specialized coagulation assays: a comprehensive study. Arch.Pathol. Lab. Med. 2006; 130(1): 39-44.
Van den Ouweland, J., Church S. High Total Protein Impairs Appropriate Gel Barrier Formation in BD Vacutainer Blood Collection Tubes. Clin. Chem. 2007; 53(2): 364-5.
Bowen R. Effect of Blood Collection Tubes on Total Triiodothyronine and Other Laboratory Assays. Clin. Chem. 2005; 51(2): 424-33.
Spiritus T. (). Iodinated Contrast Media Interfere with Gel Barrier Formation in Plasma and Serum Separator Tubes. Clin. Chem. 2003; 49(7): 1187-9.
Berk S. False Reduction in Serum Methadone Concentrations by BD Vacutainer(R) Serum Separator Tubes (SSTTM). Clin. Chem. 2006; 52(10): 1972-4.
Dasgupta A. Yared M., Wells A. Time-Dependent Absorption of Therapeutic Drugs by the Gel of the Greiner Vacuette Blood Collection Tube. Therapeutic Drug Monitoring. 2000; 22(4): 427-31.
Wilde C. Subject preparation, sample collection, and handling. In book: Wild D. The immunoassay. Handbook. CA: Elsevier; 2005: 443.
Bowen R., Hortin G., Csako G., Otañez O., Remaley A. Impact of blood collection devices on clinical chemistry assays. Clin. Biochem. 2010; 43(1-2): 4-25.
Dubrowny N.E,, Harrop A.J. “Collection device”, U.S. Patent No US 6,686,204 B2 February; 2004.
Wang C., Shiraishi S., Leung A., Baravarian S., Hull L., Goh V. et al. Validation of a testosterone and dihydrotestosterone liquid chromatography tandem mass spectrometry assay: Interference and comparison with established methods. Steroids. 2008; 73(13): 1345-52.
Jones A., Honour J. Unusual results from immunoassays and the role of the clinical endocrinologist. Clinical Endocrinology. 2006; 64(3): 234-44.
Rayana M., Burnett R., Covington A., D’Orazio P., Fogh-Andersen N., Jacobs E. et al. Recommendation for measuring and reporting chloride by ISEs in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing and Working Group on Selective Electrodes. Clinical Chemistry And Laboratory Medicine (CCLM). 2006; 44(3): 346-52.
Lippi G., Avanzini P., Cosmai M., Aloe R., Ernst D. Incomplete filling of lithium heparin tubes affects the activity of creatine kinase and γ-glutamyltransferase. British Journal Of Biomedical Science. 2012; 69(2): 67-70.
Goodman J., Vincent J., Rosen I. Serum Potassium Changes in Blood Clots. American Journal of Clinical Pathology. 1954; 24(1): 111-3.
Foucher B, Pina G, Desjeux G, Prevosto JM, Chaulet JF, Cheminel V. Influence of temperature and delayed centrifugation: stability studies of 28 analytes currently analysed. Ann. Biol.Clin. (Paris). 2005; 63(1): 93-100.
Zwart S., Wolf M., Rogers A., Rodgers S. Gillman P., Hitchcox K. et al. Stability of analytes related to clinical chemistry and bone metabolism in blood specimens after delayed processing. Clin. Biochem. 2009; 42(9): 907-10.
Evans M., Livesey J., Ellis M., Yandle T. (). Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin. Biochem. 2001; 34(2): 107-12.
Ono T., Kitaguchi K., Takehara M., Shiiba M., Hayami K. Serum-constituents analyses: effect of duration and temperature of storage of clotted blood. Clin. Chem. 1981; 27(1): 35-8.
Imeri F., Herklotz R., Risch L., Arbetsleitner C., Zerlauth M., Risch G., Huber A. Stability of hematological analytes depends on the hematology analyser used: A stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clinica Chimica Acta. 2008; 397(1-2): 68-71.
Parent X., Alenabi F., Brignon P., Souberbielle J.C. Delayed measurement of PTH in patients with CKD: storage of the primary tube in the dialysis unit, which temperature, which kind of tube? Nephrol Ther. 2009; 5(1): 34-40.
Jane Ellis M., Livesey J., Evans M. Hormone stability in human whole blood. Clin. Biochem. 2003; 36(2): 109-12.
Boyanton B.L., Blick K.E. Stability studies of twenty-four analytes in human plasma and serum. Clin. Chem. 2002; 48(12): 2242-7.
Zhang D.J., Elswick R.K., Miller W.G., Bailey J.L. Effect of serum-clot contact time on clinical chemistry laboratory results. Clin. Chem. 1998; 44(6):1325-33.
Lippi G., Simundic A. Laboratory networking and sample quality: a still relevant issue for patient safety. Clinical Chemistry and Laboratory Medicine. 2012; 50(10): 1703-5.
Klose T., Borchert H., Pruss A., Roth W., Bohnen H., Putzker M. Current concepts for quality assured long-distance transport of temperature-sensitive red blood cell concentrates. Vox Sanguinis. 2010; 99(1): 44-53.
Pupek A., Matthewson B., Whitman E., Fullarton R., Chen Y. Comparison of pneumatic tube system with manual transport for routine chemistry, hematology, coagulation and blood gas tests. Clinical Chemistry and Laboratory Medicine (CCLM), 2017; 55(10): 1537-44.
Amukele T., Sokoll L., Pepper D., Howard D., Street J. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens? PLoS One. 2015; 10(7).
Drone Crash Database.URL: https://dronewars.net/drone-crash-database/ (Last access: 26. 11. 2019).
Cadamuro J., Wiedemann H., Mrazek C., Felder T., Oberkofler H., Fiedler G., Haschke-Becher E. The economic burden of hemolysis. Clinical Chemistry and Laboratory Medicine (CCLM). 2015; 53(11): 285-8.
Lippi G., Cervellin G., Plebani M. Reporting altered test results in hemolyzed samples: is the cure worse than the disease? Clin. Chem. Lab. Med. 2017;. 26;55(8): 1112-4.
Simundic A., Nikolac N., Ivankovic V., Ferenec-Ruzic D., Magdic B., Kvaternik M., Topic E. Comparison of visual vs. automated detection of lipemic, icteric and hemolyzed specimens: can we rely on a human eye?. Clinical Chemistry and Laboratory Medicine. 2009; 47(11): 1361-5.
Nordic Hemolysis project 2014. URL: https://doc.noklus.no/handler.ashx?r=nkk&id=Preanalytiske%20EKV-program%202014%20Nordic%20Hemolysis%20project%202014.pdf (last access: 26.11.2019)
Nikolac N. Lipemia: causes, interference mechanisms, detection and management. Biochemia Medica. 2014; 15;24(1): 57-67.
Garvey W., Kwon S., Zheng D., Shaughnessy S., Wallace P., Hutto A. et al. Effects of Insulin Resistance and Type 2 Diabetes on Lipoprotein Subclass Particle Size and Concentration Determined by Nuclear Magnetic Resonance. Diabetes. 2003; 52(2), 453-62.
Schiettecatte J., Anckaert E., Smitz J. Interferences in Immunoassays, 2012. URL: https://www.intechopen.com/books/advances-in-immunoassay-technology/interference-in-immunoassays (last access: 26.11.2019)
Lippiatt C. Endogenous interferences in laboratory tests: icteric, lipaemic and turbid samples. Annals Of Clinical Biochemistry: International Journal of Laboratory Medicine. 2016; 53(4): 519-20.
Nikolac N., Simundic A., Miksa M., Lima-Oliveira G., Salvagno G., Caruso B., Guidi G. (). Heterogeneity of manufacturers’ declarations for lipemia interference — An urgent call for standardization. Clinica Chimica Acta. 2013; 426: 33-40.
Dimeski G., McWhinney B., Jones B., Mason R., Carter A. Extent of bilirubin interference with Beckman creatinine methods. Annals of Clinical Biochemistry. 2008; 45(1): 91-2.
MacIver N., Jacobs S., Wieman H., Wofford J., Coloff J., Rathmell J. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology. 2008; 84(4): 949-57.
Aibibula M., Naseem K., Sturmey R. Glucose metabolism and metabolic flexibility in blood platelets. Journal Of Thrombosis And Haemostasis. 2018; 16(11): 2300-14.
Kalyani, R., & Egan, J. Diabetes and Altered Glucose Metabolism with Aging. Endocrinology And Metabolism Clinics of North America. 2013; 42(2): 333-47.