Аннотация
Комбинированная антибиотикотерапия широко используется при инфекциях, вызванных карбапенеморезистентными штаммами K. pneumoniae. Цель работы – выявление синергидной активности комбинаций из двух карбапенемов в отношении множественно- и экстремально-антибиотикорезистентных штаммов K. pneumoniae, продуцирующих карбапенемазы различных типов. Для 60 антибиотикорезистентных штаммов K. pneumoniae, выделенных в 8 городах Беларуси, методом последовательных микроразведений определены минимальные подавляющие концентрации (МПК) колистина и карбапенемов, выполнена детекция генов карбапенемаз и фосфоэтаноламинтрансфераз. Методом «шахматной доски» определена чувствительность к комбинации эртапенема и дорипенема. Выявлены высокие значения МПК карбапенемов для штаммов – продуцентов карбапенемазы NDM (МПК50 меропенема 64 мг/л, МПК50 дорипенема 64 мг/л). Дорипенем проявлял большую активность, МПК дорипенема ≤ 16 мг/л (низкий уровень резистентности) определялась у 28 (46,7%) штаммов, МПК меропенема ≤ 16 мг/л – у 8 (13,3% штаммов). Эффект потенцирования активности дорипенема эртапенемом в фиксированной фармакокинетической / фармакодинамической концентрации наблюдали в отношении 20,0% штаммов, продуцирующих карбапенемазу KPC и 29,0% штаммов, продуцирующих карбапенемазу OXA-48. Потенцирующий эффект не зависел от наличия устойчивости к колистину. Таким образом, подтверждена способность эртапенема потенцировать антимикробную активность дорипенема и меропенема в отношении части штаммов, продуцирующих сериновые карбапенемазы (KPC и OXA-48). Показана необходимость рутинного определения истинных значений МПК карбапенемов для оптимизации режимов их дозирования и выбора схем комбинированной антибиотикотерапии.
Список литературы
Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном. Клиническая микробиология и антимикробная химиотерапия. 2020; 22(1): 4-19.
Тапальский Д.В., Осипов В.А., Евсеенко Е.О. Савельева А.К., Козловская И.В., Козик А.П. и др. Металло-бета-лактамазы и карбапенемазы экстремально-антибиотикорезистентных Klebsiella pneumoniae: распространение в Беларуси. Здравоохранение. 2017; 3: 40–7.
Stefaniuk E.M., Tyski S. Colistin resistance in Enterobacterales strains – a current view. Pol. J. Microbiol. 2019; 68(4): 417-27. https://doi.org/10.33073/pjm-2019-055
Rojas L.J., Salim M., Cober E., Richter S.S., Perez F., Salata R.A. et al. Colistin resistance in carbapenem-resistant Klebsiella pneumoniae: laboratory detection and impact on mortality. Clin. Infect. Dis. 2017; 64(6): 711-8. https://doi.org/10.1093/cid/ciw805
Сухорукова М.В., Эйдельштейн М.В., Иванчик Н.В. Склеенова Е.Ю., Шайдуллина Э.Р., Азизов И.С. и др. Антибиотикорезистентность нозокомиальных штаммов Enterobacterales в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН 2015–2016. Клиническая микробиология и антимикробная химиотерапия. 2019; 21(2): 147-59.
Elbediwi M., Li Y., Paudyal N., Pan H., Li X., Xie S. et al. Global burden of colistin-resistant bacteria: mobilized colistin resistance genes study (1980-2018). Microorganisms. 2019; 7(10): 461. https://doi.org/10.3390/microorganisms7100461
Petrosillo N., Giannella M., Lewis R., Viale P. Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Expert Rev. Anti Infect. Ther. 2013; 11(2): 159–77. https://doi.org/10.1586/eri.12.162
Galani I., Nafplioti K., Chatzikonstantinou M., Souli M. In vitro evaluation of double-carbapenem combinations against OXA-48-producing Klebsiella pneumoniae isolates using time-kill studies. J. Med. Microbiol. 2018; 67(5): 662-8. https://doi.org/10.1099/jmm.0.000725
Cancelli F., Oliva A., De Angelis M., Mascellino M.T., Mastroianni C.M., Vullo V. Role of double-carbapenem regimen in the treatment of infections due to carbapenemase producing carbapenem-resistant Enterobacteriaceae: a single-center, observational study. Biomed. Res. Int. 2018; 2018: 2785696. https://doi.org/10.1155/2018/2785696
Cprek J.B., Gallagher J.C. Ertapenem-containing double-carbapenem therapy for treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2015; 60(1): 669-673. https://doi.org/10.1128/AAC.01569-15
Mashni O., Nazer L., Le J. Critical review of double-carbapenem therapy for the treatment of carbapenemase-producing Klebsiella pneumoniae. Ann. Pharmacother. 2019; 53(1): 70-81. https://doi.org/10.1177/1060028018790573
White B.P., Patel S., Tsui J., Chastain D.B. Adding double carbapenem therapy to the armamentarium against carbapenem-resistant Enterobacteriaceae bloodstream infections. Infect. Dis. 2019; 51(3): 161-7. https://doi.org/10.1080/23744235.2018.1527470
De Pascale G., Martucci G., Montini L., Panarello G., Cutuli S.L., Di Carlo D. et al. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit. Care. 2017; 21(1): 173. https://doi.org/10.1186/s13054-017-1769-z
ISO 20776-1:2006 Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices – Part 1 : Reference method for testing the in vitro, 2006. Available at: www.iso.org/standard/41630.html. Accessed October 01, 2020.
Rebelo A.R., Bortolaia V., Kjeldgaard J.S. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018; 23(6): 17-00672. https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672
European Committee on Antimicrobial Susceptibility testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Ver. 10.0., 2020. Available at: www.eucast.org/clinical_breakpoints/. Accessed October 01, 2020.
Laishram S., Pragasam A.K., Bakthavatchalam Y.D., Veeraraghavan B. An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian J. Med. Microbiol. 2017; 35(4): 445-68. https://doi.org/10.4103/ijmm.IJMM_17_189
Ikawa K., Morikawa N., Uehara S., Monden K., Yamada Y., Honda N., Kumon H. Pharmacokinetic-pharmacodynamic target attainment analysis of doripenem in infected patients. Int. J. Antimicrob. Agents. 2009; 33(3): 276–9. https://doi.org/10.1016/j.ijantimicag.2008.08.031
Van Wart S.A., Andes D.R., Ambrose P.G., Bhavnani S.M.. Pharmacokinetic-pharmacodynamic modeling to support doripenem dose regimen optimization for critically ill patients. Diagn. Microbiol. Infect. Dis. 2009; 63(4): 409–14. https://doi.org/10.1016/j.diagmicrobio.2009.01.027
Mouton J.W., Punt N. Use of the t > MIC to choose between different dosing regimens of β-lactam antibiotics. J. Antimicrob. Chemother. 2001; 47(4): 500-1. https://doi.org/10.1093/jac/47.4.500
O’Donnell J.N., Miglis C.M., Lee J.Y., Tuvell M., Lertharakul T., Scheetz M.H. Carbapenem susceptibility breakpoints, clinical implications with the moving target. Expert Rev. Anti Infect. Ther. 2016; 14(4): 389-401. https://doi.org/10.1586/14787210.2016.1159131
Стецюк О.У., Андреева И.В., Козлов Р.С. Новый карбапенемный антибиотик дорипенем: перспективы применения в клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2008; 10(3): 245-59.
Anderson K.F., Lonsway D.R., Rasheed J.K., Biddle J., Jensen B., McDougal L.K., Carey R.B. et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J. Clin. Microbiol. 2007; 45(8): 2723-5. https://doi.org/10.1128/JCM.00015-07
Poirel L., Kieffer N., Nordmann P. In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2016; 71(1): 156-61. https://doi.org/10.1093/jac/dkv294
Bialvaei A.Z., Kafil H.S., Asgharzadeh M., Yousef Memar M., Yousefi M. Current methods for the identification of carbapenemases. J. Chemother. 2016; 28(1): 1-19. https://doi.org/10.1179/1973947815Y.0000000063