Аннотация
Одним из важных компонентов системы антиоксидантной защиты является система глутатиона, активность которой при избыточном весе меняет направленность в зависимости от гендерной и этнической принадлежности. Результаты исследований с участием женщин с избыточной массой тела и возрастным дефицитом эстрогенов не представляются однозначными. В исследовании приняли участие 61 женщина, находящиеся в постменопаузальном периоде, которые после клинико-анамнестического обследования были разделены на 2 группы: контроль (ИМТ = 19-24,9 кг/м2) и группа с избыточной массой тела (ИМТ = 25-29,9 кг/м2). Критериями исключения из исследования были: применение заместительной гормонотерапии, применение препаратов антиоксидантного ряда, заболевания эндокринного генеза, обострение хронических заболеваний, преждевременная ранняя менопауза, хирургическая менопауза. В крови определяли параметры липидного профиля с расчетом коэффициента атерогенности; уровни восстановленного и окисленного глутатиона с расчетом их соотношения, активность глутатион S-трансферазы и глутатионредуктазы. У женщин с избыточной массой тела выявлено повышение уровня триацилглицеролов (p=0,041) и холестерола в липопротеинах очень низкой плотности (p=0,044). При оценке активности системы глутатиона у женщин основной группы по сравнению с контролем отмечено повышение активности глутатион-S-трансферазы (р=0,023) и глутатионредуктазы (р=0,022), однако уровни восстановленного и окисленного глутатиона, а также их соотношение не отличаются от контрольных значений. Полученные результаты свидетельствуют об активации ферментативного звена системы глутатиона в ответ на изменения липидного статуса у женщин с избыточной массой тела, находящихся в постменопаузальном периоде.
Список литературы
Lumsden M.A., Sassarini J. The evolution of the human menopause. Climacteric. 2019; 22(2): 111-6
Семёнова Н.В., Мадаева И.М., Даренская М.А., Гаврилова О.А., Жамбалова Р.М., Колесникова Л.И. Липидный профиль у женщин двух этнических групп в климактерическом периоде. Acta Biomedica Scientifica. 2018; 3(3): 93-8
Taleb-Belkadi O., Chaib H., Zemour L., Azzedine F., Belkacem C., Khedidja M. Lipid profile, inflammation, and oxidative status in peri- and postmenopausal women. Gynecol. Endocrinol. 2016; 32(12): 982-5.
Do K.A., Green A., Guthrie J.R., Dudley E.C., Burger H.G., Dennerstein L. Longitudinal study of risk factors for coronary heart disease across the menopausal transition. Am. J. Epidemiol. 2000; 151(6): 584-93.
Coyoy A., Guerra-Araiza C., Camacho-Arroyo I. Metabolism regulation by estrogens and their receptors in the central nervous system before and after menopause. Horm. Metab. Res. 2016; 48: 489-96.
Cervellati C., Bergamini C.M. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin. Chem. Lab. Med. 2016; 54(5): 739-53.
Chen J.-T., Kotani K. Serum γ-glutamyltranspeptidase and oxidative stress in subjectively healthy women: an association with menopausal stages. Aging Clin. Exp. Res. 2015; 28(4): 619-24.
Ogunro P.S., Bolarinde A.A., Owa O.O., Salawu A.A., Oshodi A.A. Antioxidant status and reproductive hormones in women during reproductive, perimenopausal and postmenopausal phase of life. Afr. J. Med. Med. Sci. 2014; 43(1): 49-57.
Singh S., Singh S., Kumar B. Oxidative stress and superoxide dismutase (SOD) activity in postmenopausal women. Inter. J. Sci. Res. 2016; 5(1): 819-21.
Kolesnikova L., Semenova N., Madaeva I., Suturina L.V., Solodova E.I, Grebenkina L.A. et al. Аntioxidant status in peri- and postmenopausal women. Maturitas. 2015; 81(1): 83-7.
Victorino V.J., Panis C., Campos F.C., Cayres R.C., Colado-Simao A.N., Oliveira S.R. et al. Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women. Age (Dordr). 2013; 35:1411-21.
Wiacek M., Zubrzycki I.Z., Bojke O., Kim H.J. Menopause and age-driven changes in blood level of fat- and water-soluble vitamins. Climacteric. 2013;16(6): 689-99.
Колесникова Л.И., Даренская М.А., Колесников С.И. Свободнорадикальное окисление: взгляд патофизиолога. Бюллетень сибирской медицины. 2017; 16(4): 16-29
Circu M., Aw T.Y. Glutathione and modulation of cell apoptosis. Biochim. Biophys. Acta. 2012; 1823(10): 1767-77.
Wang X., Hai C. Redox modulation of adipocyte differentiation: hypothesis of Redox Chain and novel in sights in to intervention of adipogenesis and obesity. Free Rad. Biol. Med. 2015; 89: 99-125.
Adenan D.M., Jaafar Z., Jayapalan J.J., Abdul Aziz A. Plasma antioxidants and oxidative stress status in obese women: correlation with cardiopulmonary response. PeerJ. 2020; 19(8): e9230.
Langhardt J., Flehmig G., Klöting N., Lehmann S., Ebert T., Kern M. et al. Effects of weight loss on glutathione peroxidase 3 serum concentrations and adipose tissue expression in human obesity. Obes. Facts. 2018; 11(6): 475-90.
Сухих Г.Т., Сметник В.П., Юренева С.В., Ермакова Е.И., Чернуха Г.Е., Якушевская О.В. Менопауза и климактерическое состояние у женщин. Клинические рекомендации. М.: НМИЦ АГП им. В.И. Кулакова; 2016
Hisin P.J., Hilf R. Fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976; 74(1): 214-26
Камышников В.С. Справочник по клинико-биохимическим исследованиям и лаборатрной диагностике. 3-е изд. М.: МЕДпресс-информ; 2009
Savini I., Catani M.V., Evangelista D., Gasperi V., Avigliano L. Obesity-associated oxidative stress: strategies finalized to improvered oxstate. Int. J. Mol. Sci. 2013; 14: 10497-538.
Lubrano C., Valacchi G., Specchia P., Gnessi L., Rubanenko E.P., Shuginina E.A. et al. Integrated haematological profiles of redox status, lipid and inflammatoryprotein biomarkers in benign obesity and unhealthy obesity with metabolic syndrome. Oxidative Medicine and Cellular Longevity. 2015; 2015: 490613.
Lechuga-Sancho A.M., Gallego-Andujar D., Ruiz-Ocaña P.,Visiedo F.M., Saez-Benito A., Schwarz M. et al. Obesity induced alterations in redox homeostasis and oxidative stress a represent from an early age. PLoS ONE. 2018; 13:e0191547.
Amirkhizi F., Siassi F., Djalali M., Shahraki S.H. Impaired enzymatic antioxidant defense in erythrocytes of women with general and abdominal obesity. Obes. Res. Clin. Pract. 2014; 8(1):e26-34.
Hermsdorff H.H.M., Puchau B.,Volp A.C.P., Barbos K.B., Bressan J., Zulet M.Á. et al. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutrition &Metabolism. 2011; 8:59.
Jankovica A., Korac A., Srdic-Galic B., Buzadzic B., Otasevic V., Stancic A. et al. Differences in the redox status of human visceral and subcutaneous adipose tissues — relationships to obesity and metabolic risk. Metabolism: Clinical and Experimental. 2014; 63:661-71.
Amaya-Villalva M.F., González-Aguilar G., Rouzaud-Sández O., Gorinstein S., Astiazarán-García H., Robles-Sánchez M. Obesity-related indicators and the irrelationship with serum antioxidant activity levels in Mexican adults. Nutricion Hospitalaria. 2015; 31:1989-95.
Čolak E., Pap D., Nikolić L.,Vicković S. The impact of obesity to antioxidant defense parameters in adolescents with increased cardiovascular risk. J. Med. Biochem. 2019; 39:1-9.