Аннотация
Цель исследования — оценка содержания цинка и выявление взаимосвязей концентрации этого микроэлемента с изменениями биохимического статуса и маркерами воспаления у пациентов в период ожогового шока. Обследованы 23 пациента в возрасте 45,3±16,1 лет с ожогами I-II-III степени, площадью поражения 31-80%. У всех пациентов в сыворотке крови определяли концентрацию цинка, альбумина, интерлейкина-6, С-реактивного белка (СРБ), активность аланинаминотрансферазы (АЛТ) и аспартатаминотрансферазы (АСТ). У 21 пациента отмечалась гипоцинкемия. Медиана концентрации этого микроэлемента была статистически значимо снижена в 1,7 раза по сравнению со значением здоровых людей. Анализ коррелятивных взаимоотношений концентрации цинка в сыворотке крови с площадью термического поражения выявил обратную зависимость средней силы (r=-0,53; р=0,008). Снижение уровня цинка в период ожогового шока ассоциировалось с развитием гипоальбуминемии (r=0,52, р=0,01). Выявлена сопряженность отклонений активности АЛТ и АСТ с изменениями концентрации цинка (-0,59<γ<-0,61, 0,008<р<0,009), что может свидетельствовать о роли дисфункции печени в развитии гипоцинкемии. Наблюдаемые изменения происходили на фоне системного воспалительного ответа, о чем свидетельствует увеличение концентрации интерлейкина-6 и СРБ. Проведение корреляционного анализа выявило ассоциативную связь между уровнем цинка и интерлейкина-6 (r=-0,63, р=0,03), а также цинка и СРБ (r=-0,41, р=0,04). Таким образом, с первых дней после травмы у тяжелообожженных пациентов наблюдается выраженный дефицит цинка, на который влияют воспалительная реакция и гипоальбуминемия. В связи с тем, что цинк является одним из ключевых факторов поддержания гомеостаза в организме, необходимо дальнейшее исследование молекулярных механизмов регуляции уровня этого микроэлемента у обожженных пациентов и разработки путей коррекции гипоцинкемии, способствующих более эффективному лечению ожоговой болезни.
Список литературы
Sommerhalder C., Blears E., Murton A.J., Porter C., Finnerty C., Herndon D.N. Current problems in burn hypermetabolism. Curr. Probl. Surg. 2020; 57(1): 100709. https://doi.org/10.1016/j.cpsurg.2019.100709
Zhang P., Zou B., Liou Y.C., Huang C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma. 2021; 9: tkaa047. https://doi.org/10.1093/burnst/tkaa047
Хакимов Э.А. Оценка эффективности и профилактики, и лечения синдрома полиорганной недостаточности у тяжелообожженных. Инновационная медицина Кубани. 2019; 1(13): 28-35
Jeschke M.G., Chinkes D.L., Finnerty C.C., Kulp G., Suman O.E., Norbury W.B. et al. Pathophysiologic response to severe burn injury. Ann. Surg. 2008; 248(3): 387-401. https://doi.org/10.1097/SLA.0b013e3181856241
Rehou S., Shahrokhi S., Natanson R., Stanojcic M., Jeschke M.G. Antioxidant and trace element supplementation reduce the inflammatory response in critically ill burn patients. J. Burn. Care Res. 2018; 39(1): 1-9. https://doi.org/10.1097/BCR.0000000000000607
Sterling J.P., Lombardi V.C. Decreasing the likelihood of multiple organ dysfunction syndrome in burn injury with early antioxidant treatment. Antioxidants (Basel). 2021; 10(8): 1192. https://doi.org/10.3390/antiox10081192
Żwierełło W., Styburski D., Maruszewska A., Piorun K., Skórka-Majewicz M., Czerwińska M. et al. Bioelements in the treatment of burn injuries — the complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium). J. Trace Elem. Med. Biol. 2020; 62: 126616. https://doi.org/10.1016/j.jtemb.2020.126616
Kurmis R., Greenwood J. Trace element supplementation following severe burn injury: a systematic review and meta-analysis. Journal of Burn Care & Research. 2016; 37 (3): 143-59. https://doi.org/10.1097/BCR.0000000000000259
Hübner C., Haase H.Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021; 41: 101916. https://doi.org/10.1016/j.redox.2021.101916
Berger M.M., Binnert C., Chiolero R.L., Taylor W., Raffoul W., Cayeux M.C. et al. Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am. J. Clin. Nutr. 2007; 85(5): 1301-6. https://doi.org/10.1093/ajcn/85.5.1301
Wang X.X., Zhang M.J., Li X.B. Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns. Zhonghua Shao Shang Za Zhi. 2018; 34(1): 57-9. https://doi.org/10.3760/cma.j.issn.1009-2587.2018.01.012
Преснякова М.В., Костина О.В., Альбицкая Ж.В. Биологическая роль цинка и его значимость в патогенезе расстройств аутистического спектра. Социальная и клиническая психиатрия. 2019; 29(3): 63-70
Baranauskas M.N., Powell J., Fly A.D., Martin B.J., Mickleborough T.D., Paris H.L. et al. Influence of zinc on the acute changes in erythropoietin and proinflammatory cytokines with hypoxia. High Alt. Med. Biol. 2021; 22(2): 148-56. https://doi.org/10.1089/ham.2020.0190
Lin P.H., Sermersheim M., Li H., Lee P.H.U., Steinberg S.M., Ma J. Zinc in wound healing modulation. Nutrients. 2017; 10(1): 16. https://doi.org/10.3390/nu10010016
Jafari P., Thomas A., Haselbach D., Watfa W., Pantet O., Michetti M. et al. Trace element intakes should be revisited in burn nutrition protocols: a cohort study. Clin. Nutr. 2018; 37(3): 958-64. https://doi.org/10.1016/j.clnu.2017.03.028
Olson L.M., Coffey R., Porter K., Thomas S., Bailey J.K., Jones L.M. et al. The impact of serum zinc normalization on clinical outcomes in severe burn patients. Burns. 2020; 46(3): 589-95. https://doi.org/10.1016/j.burns.2019.08.012
Khorasani G., Hosseinimehr S.J., Kaghazi Z. The alteration of plasma’s zinc and copper levels in patients with burn injuries and the relationship to the time after burn injuries. Singapore Med. J. 2008; 49(8): 627-30. PMID: 18756346.
Agay D., Anderson R.A., Sandre C., Bryden N.A., Alonso A., Roussel A.M. et al. Alterations of antioxidant trace elements (Zn, Se, Cu) and related metallo-enzymes in plasma and tissues following burn injury in rats. Burns. 2005; 31(3): 366-71. https://doi.org/10.1016/j.burns.2004.11.010
Jafari P., Thomas A., Haselbach D., Watfa W., Pantet O., Michetti M. et al. Trace element intakes should be revisited in burn nutrition protocols: A cohort study. Clin. Nutr. 2018; 37(3): 958-64. https://doi.org/10.1016/j.clnu.2017.03.028
Вильдяева М.В. Использование определения содержания длинноцепочечных и короткоцепочечных свободных жирных кислот в оценке эффективности лечения с использованием патогенетически обоснованных препаратов. Вестник Мордовского университета. 2013; 1-2: 41-45
Lu J., Stewart A.J., Sadler P.J. et al. Albumin as a zinc carrier: properties of its high-af nity zinc-binding site. Biochem. Soc. Trans. 2008; 36: 1317-21. https://doi.org/10.1042/bst0361317
Шейбак В.М. Транспортная функция сывороточного альбумина: цинк и жирные кислоты. Вестник Витебского государственного медицинского университета. 2015; 14(2): 16-22
Tanaka T., Narazaki M., Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014; 6 (10): a016295. https://doi.org/10.1101/cshperspect.a016295
Idrovo J.P., Boe D.M., Kaahui S., Yang W.L., Kovacs E.J. Hepatic inflammation after burn injury is associated with necroptotic cell death signaling. J. Trauma Acute Care Surg. 2020; 89(4): 768-74. https://doi.org/10.1097/TA.0000000000002865
Maares M., Haase H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016; 611: 58-65. https://doi.org/10.1016/j.abb.2016.03.022
Cirino Ruocco M.A., Pacheco Cechinatti E.D., Barbosa F.Jr., Navarro A.M. Zinc and selenium status in critically ill patients according to severity stratification. Nutrition. 2018; 45: 85-9. https://doi.org/10.1016/j.nut.2017.07.009
Xu X., Meng J., Fang Q. Prognostic value of serum trace elements Copper and Zinc levels in sepsis patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 32(11): 1320-3. https://doi.org/10.3760/cma.j.cn121430-20200313-00216
Skrovanek S., DiGuilio K., Bailey R., Huntington W., Urbas R. et al. Zinc and gastrointestinal disease. World J. Gastrointest. Pathophysiol. 2014; 5(4): 496-513. https://doi.org/10.4291/wjgp.v5.i4.496
Van Spaendonk H., Ceuleers H., Witters L., Patteet E., Joossens J., Augustyns K. et al. Regulation of intestinal permeability: the role of proteases. World J. Gastroenterol. 2017; 23(12): 2106-23. https://doi.org/10.3748/wjg.v23.i12.2106
Souffriau J., Libert C. Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev. 2018; 39: 92-101. https://doi.org/10.1016/j.cytogfr.2017.12.002
Hoeger J., Simon T.P., Beeker T., Marx G., Haase H., Schuerholz T. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients — а pilot study. PLoS Оne. 2017; 12(5): e0176069. https://doi.org/10.1371/journal.pone.0176069