Аннотация
Вирусная инфекция COVID-19 оказалась серьезным вызовом для общественного здравоохранения. Показано, что важное значение в патогенезе данного заболевания имеют нейтрофилы, которые способны не только уничтожать патогены, но и регулировать иммунный ответ и воспаление, в том числе при вирусной инфекции. Целью исследования явилось изучение функциональной активности нейтрофилов у больных COVID-19 в зависимости от степени тяжести. Проведено обследование 85 пациентов с COVID-19, которые были разделены по степени тяжести на три группы: с легкой, со средней и с тяжелой и крайне тяжелой степенями тяжести. Контрольную группу составили 30 здоровых доноров. Хемилюминесцентным анализом определены показатели функциональной активности нейтрофилов. У больных COVID-19 с легкой степенью тяжести было выявлено снижение спонтанной и стимулированной продукции АФК нейтрофилами и времени выхода на максимум свечения, что свидетельствует о снижение функциональной активности клеток. В группе пациентов со средней степенью тяжести было показано снижение спонтанной продукции нейтрофилов, но более высокий показатель коэффициента активации по сравнению со здоровыми людьми. Больные с тяжелым и крайне тяжелым течением характеризовались пониженной спонтанной и стимулированной продукцией АФК нейтрофилами, временем выхода на максимум свечения, но повышенным коэффициентом активации, что свидетельствует о снижении функциональной активности нейтрофилов, но повышенной активации клеток в ответ на стимуляцию. Сравнительный анализ показателей активности нейтрофилов в зависимости от степени тяжести заболевания показал, что наиболее высокие значения спонтанной и стимулированной продукции АФК нейтрофилами были получены у пациентов со средней степенью тяжести. Корреляционный анализ выявил прямую зависимость коэффициента активации нейтрофилов от степени тяжести COVID-19, что позволит использовать данный показатель в качестве одного из предикторов тяжести заболевания.
Список литературы
1. Kutti-Sridharan G., Vegunta R., Vegunta R., Mohan B. P., Rokkam V. R. P. SARS-CoV2 in different body fluids, risks of transmission, and preventing COVID-19: a comprehensive evidence-based review. International Journal of Preventive Medicine. 2020; 11:97. DOI: 10.4103/ijpvm.IJPVM_255_20.
2. Nikiforov V.V., Suranova T.G., Chernobrovkina T.Ya., Yankovskaya Ya.D., Burova S.V. New coronavirus infection (COVID-19): clinical and epidemiological aspects. Arkhiv vnutrenney meditsiny. 2020; 10(2):87-93. DOI: 10.20514/2226-6704-2020-10-2-87-93. (in Russian)
3. Bevova M.R., Netesov S.V., Aul’chenko Yu.S. New coronavirus infection COVID-19. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2020; 38(2):51‑8. DOI: 10.17116/molgen20203802151. (in Russian)
4. Fernandes L.L., Pacheco V.B., Borges L., Athwal H.K., Eduardo F.P., Bezinelli L. et al. Saliva in the diagnosis of COVID-19: a review and new research directionsю. Journal of Dental Research. 2020; 99(13):1435–43. DOI: 10.1177/0022034520960070.
5. Fernandes A.C.L., Vale A.J.M., Guzen F.P., Pinheiro F.I., Cobucci R.N., Azevedo E. P. Therapeutic options against the new coronavirus: updated clinical and laboratory evidences. Frontiers in Medicine. 2020; 7:546. DOI: 10.3389/fmed.2020.00546.
6. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014; 9:181–218. DOI: 10.1146/annurev-pathol-020712-164023.
7. Barr F.D., Ochsenbauer C., Wira C.R., RodriguezGarcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunology. 2018; 11(5):1420–8. DOI: 10.1038/s41385-018-0045-0.
8. Nesterova I.V., Kolesnikova N.V., Chudilova G.A., Lomtatidze L.V., Kovaleva S.V., Evglevskiy A.A., Nguen T.Z.L. A new look at neutrophil granulocytes: rethinking old dogmas. Part 2. Infektsiya i immunitet. 2018. 8 (1):7–18. DOI: 10.15789/2220-7619-2018-1-7-18. (in Russian)
9. Lamichhane P.P., Samarasinghe A.E. The role of innate leukocytes during influenza virus infection. Journal of Immunology Research. 2019; 2019:1-17. DOI: 10.1155/2019/8028725.
10. Lagunas-Rangel F.A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Journal of Medical Virology. 2020; 92(10):1733-4. DOI: 10.1002/jmv.25819.
11. Fedorova N.D., Sumbatyan D.A., Stukova M.A., Ivanov A.V., Semenova E.V., Filatov M.V., Varfolomeeva E.Yu. Viral infections affect the functional activity of peripheral blood neutrophils. Aktual’nye voprosy biologicheskoy fiziki i khimii. 2021; 1(6): 115-23. (in Russian)
12. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leuk. Biol. 2020; 108(1):377–96. DOI: 10.1002/JLB.4MIR0220-574RR.
13. Sun S., Cai X., Wang H., He G., Lin Y., Lu B. et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin. Chim. Acta. 2020; 507:174–80. DOI: 10.1016/j.cca.2020.04.024.
14. Wang D., Hu B., Hu C., Zhu F., Liu H., Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–9. DOI:10.1001/jama.2020.1585.
15. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018; 9: 1-17. DOI: https://doi.org/10.3389/fphys.2018.00113.
16. Obraztsov I.V., Godkov M.A., Polimova A.M., Demin E.M., Proskurnina E.V., Vladimirov Yu.A Assessment of the functional activity of whole blood neutrophils by two-stage stimulation: a new approach to chemiluminescence analysis. Rossiyskiy immunologicheskiy zhurnal. 2015; 9(4): 418–25. (in Russian)
17. Thierry A., Roch B. Neutrophil Extracellular traps and byproducts play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med. 2020; 9(9): 2942. DOI: 10.3390/jcm9092942.
18. Morrissay S., Geller A.E., Hu X., Tieri D., Ding C., Klaes C.K. et al. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight. 2021; 6(9): 1-19. DOI: 10.1172/jci.insight.148435.
19. Vladimirov Yu.A., Proskurnina E. V. Free radicals and cell chemiluminescence. Uspekhi biologicheskoy khimii. 2009; 49: 341–88. (in Russian)
20. Lazareva A., Kolenchukova O., Smirnova S., Melder V., Tereshchenko S. Hemiluminescent activity of blood phagocytes in patients with COVID-19. European Respiratory Journal. 2021; 58(65):3878. DOI: 10.1183/13993003.congress-2021.PA3878.
21. Schulte-Schrepping J., Reusch N., Paclik D., Baßler K., Schlickeiser S., Zhang B. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020; 182(6):1419–40. DOI: 10.1016/j.cell.2020.08.001.
22. Savchenko A.A., Kudryavtsev I.V., Borisov A.G. Methods of evaluation and the role of respiratory burst in the pathogenesis of infectious and inflammatory diseases. Infektsiya i immunitet. 2017; 7(4): 327–40. DOI:10.15789/2220-7619-2017-4-327-340. (in Russian)
23. Masso-Silva J., Moshensky A., Lam M., Odish M., Patel A., Xu L. et al. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19) patients: a case series and review of the literature. Clin. Infect. Dis. 2022; 74(3): 479-89. DOI: 10.1093/cid/ciab437.
24. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020; 46(5):846–8. DOI: 10.1007/s00134-020-05991-x.
25. Parackova Z., Zentsova I., Bloomfield M., Vrabcova P., Smetanova J., Klocperk A. et al. Disharmonic Inflammatory Signatures in COVID-19: Augmented Neutrophils but Impaired Monocytes and Dendritic Cells Responsiveness. Cells. 2020; 9(10):2206. DOI: 10.3390/cells9102206.
26. Leppkes M., Knopf J., Naschberger E., Lindemann А., Singh J., Herrmannet I. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020; 58:102925. DOI: 10.1016/j.ebiom.2020.102925.
27. Wang J., Li Q., Yin Y., Zhang Y., Cao Y., Lin X. et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Frontiers Immunol. 2020; 11:2063. DOI: 10.3389/fimmu.2020.02063.
28. Reusch N., Domenico E.D., Bonaguro L., Schulte-Schrepping J., Baßler K., Schultze J. et al. Neutrophils in COVID-19. Front Immunol. 2021; 12:652470 DOI: 10.3389/fimmu.2021.652470.
29. Jimeno S., Ventura P., Castellano J., García-Adasme S., Miranda M. Touza P. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Clin. Invest. 2021; 51(1): e13404. DOI: 10.1111/eci.13404.
30. Barnes B. J., Adrover J. M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. The Journal of Experimental Medicine. 2020; 217(6): 1-7. DOI: 10.1084/jem.20200652.