Список литературы
1. Perk J. The 2016 version of the European Guidelines on Cardiovascular Prevention. Eur Heart J. Cardiovasc. Pharmacother. 2017; 3 (1): 9-10. DOI: 10.1093/ehjcvp/pvw030.
2. Kozhevnikova M.V., Belenkov Yu.N. Biomarkers in Heart Failure: Current and Future. Kardiologiya. 2021; 61 (5): 4-16. DOI: 10.18087/cardio.2021.5. n1530. (in Russian)
3. Aliyeva A.M., Reznik E.V., Hasanova E.T., Zhbanov I.V., Nikitin I.G. Clinical value of blood biomarkers in patients with chronic heart failure. Arkhiv vnutrenney meditsiny. 2018; 8 (5): 333-45. DOI: 10.20514/2226-6704-2018-8-5-333-345. (in Russian)
4. Aliyevа A.M., Almazova I.I., Pinchuk T.V., Resnick E.V., Fedulaev Yu.N., Nikitin I.G. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Klinicheskaya meditsina. 2020; 98 (3): 203-9. DOI: 10.30629/0023-2149-2020-98-3-203-209. (in Russian)
5. Alieva A.M., Pinchuk T.V., Voronkova K.V., Shnakhova L.M., Ettinger O.A., Akhmedova M.F. et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021; 23 (10): 756-9. DOI: 10.26442/20751753.2021.10.201113. (in Russian)
6. Hang P.Z., Zhu H., Li P.F., Liu J., Ge F.Q., Zhao J. et al. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel). 2021; 11 (1): 70. DOI: 10.3390/life11010070.
7. Bazzari A.H., Bazzari F.H. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022; 23 (15): 8417. DOI 10.3390/ijms23158417.
8. Fominova U.N., Gurina O.I., Shepeleva I.I.,Popova T.N., Kekelidze Z.I., Chekhonin V.P. Neurotrophic factor of the brain: structure and interaction with receptors. Rossiyskiy psikhiatricheskiy zhurnal. 2018; (4): 64-72. (in Russian)
9. Scarisbrick I.A., Jones E.G., Isackson P.J. Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre- and postnatal rat. J. Neurosci. 1993; 13: 875-93. DOI: 10.1523/JNEUROSCI.13-03-00875.1993.
10. Lima Giacobbo B., Doorduin J., Klein H.C.., Dierckx R.A.J.O., Bromberg E., de Vries E.F.J. Brain-Derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol. Neurobiol. 2019; 56 (5): 3295-3312. DOI: 10.1007/s12035-018-1283-6.
11. Li Y., Li F., Qin D., Chen H., Wang J., Wang J. et al. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci. 2022; 14: 986443. DOI: 10.3389/fnagi.2022.986443.
12. Ernfors P., Lee K.-F., Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature. 1994; 368: 147-50. DOI: 10.1038/368147a0.
13. Sochal M., Ditmer M., Gabryelska A., Białasiewicz P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J. Clin. Med. 2022; 11 (20): 6023. DOI: 10.3390/jcm11206023.
14. Nguyen V.T., Hill B., Sims N., Heck A., Negron M., Lusk C. et al. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural. Regen. Res. 2023; 18 (1): 102-6. DOI: 10.4103/1673-5374.343894.
15. Lin C.C., Huang T.L. Brain-derived neurotrophic factor and mental disorders. Biomed. J. 2020; 43 (2): 134-42. DOI: 10.1016/j.bj.2020.01.001.
16. Hing B., Sathyaputri L., Potash J.B. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2018; 177 (2): 143-67. DOI: 10.1002/ajmg.b.32616.
17. Yang S., Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr. Neuropharmacol. 2022; 20 (8): 1479-97. DOI: 10.2174/1570159X19666210915122820.
18. Gupta V.K., You Y., Li J.C., Klistorner A., Graham S.L. Protective Effects of 7,8-Dihydroxyflavone on Retinal Ganglion and RGC-5 Cells Against Excitotoxic and Oxidative Stress. J. Mol. Neurosci. 2013; 49: 96-104. DOI: 10.1007/s12031-012-9899-x.
19. Kang J.S., Choi I.-W., Han M.H., Kim G.-Y., Hong S.H., Park C. et al. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts. Int. J. Mol. Med. 2015; 36: 501-10. DOI: 10.3892/ijmm.2015.2256.
20. Huang H.-M., Huang C.-C., Tsai M.-H., Poon L.Y.-C., Chang Y.-C. Systemic 7,8-Dihydroxyflavone Treatment Protects Immature Retinas Against Hypoxic-Ischemic Injury via Müller Glia Regeneration and MAPK/ERK Activation. Investig. Opthalmol. Vis. Sci. 2018; 59: 3124-35. DOI: 10.1167/iovs.18-23792.
21. Tsai T., Klausmeyer A., Conrad R., Gottschling C., Leo M., Faissner A. et al. 7,8-Dihydroxyflavone leads to survival of cultured embryonic motoneurons by activating intracellular signaling pathways. Mol. Cell Neurosci. 2013; 56: 18-28. DOI: 10.1016/j.mcn.2013.02.007.
22. Park H.Y., Kim G.Y., Hyun J.W., Hwang H.J., Kim N.D., Kim B.W. et al. 7,8-Dihydroxyflavone exhibits anti-inflammatory properties by downregulating the NF-kappaB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Int. J. Mol. Med. 2012; 29: 1146-52. DOI: 10.3892/ijmm.2012.935.
23. Han X., Cheng M.-N., Chen L., Fang H., Wang L.-J., Li X.-T. et al. 7,8-Dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cell death through modulating PI3K/Akt and JNK pathways. Neurosci Lett. 2014; 581: 85-8. DOI: 10.1016/j.neulet.2014.08.016.
24. Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y. et al. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic. Biol. Med. 2019; 130: 557-67. DOI: 10.1016/j.freeradbiomed.2018.11.024.
25. Wang Z., Wang S.-P., Shao Q., Li P.-F., Sun Y., Luo L.-Z. et al. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic. Biol. Med. 2019; 145: 187-97.
DOI: 10.1016/j.freeradbiomed.2019.09.033.
26. Huai R., Han X., Wang B., Li C., Niu Y., Li R. et al. Vasorelaxing and Antihypertensive Effects of 7,8-Dihydroxyflavone. Am. J. Hypertens. 2013; 27: 750-60. DOI: 10.1093/ajh/hpt220.
27. Helan M., Aravamudan B., Hartman W.R., Thompson M.A., Johnson B.D., Pabelick C.M. et al. BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J. Mol. Cell Cardiol. 2014; 68: 89-97. DOI: 10.1016/j.yjmcc.2014.01.006.
28. Feng N., Huke S., Zhu G., Tocchetti C.G., Shi S., Aiba T. et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc. Natl. Acad. Sci. USA. 2015; 112: 1880-5. DOI: 10.1073/pnas.1417949112.
29. Fulgenzi G., Tomassoni-Ardori F., Babini L., Becker J., Barrick C., Puverel S. et al. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation. J. Cell Biol. 2015; 210: 1003-12. DOI: 10.1083/jcb.201502100.
30. Hang P., Zhao J., Cai B., Tian S., Huang W., Guo J. et al. Brain-de against myocardial infarction in rodents. Int. J. Biol. Sci. 2015; 11 (5): 536-45. DOI: 10.7150/ijbs.10754.
31. Cao L., Zhang L., Chen S., Yuan Z., Liu S., Shen X. et al. BDNF-mediated migration of cardiac microvascular endothelial cells is impaired during ageing. J. Cell. Mol. Med. 2012; 16: 3105-15. DOI: 10.1111/j.1582-4934.2012.01621. x.
32. Halade G.V., Ma Y., Ramirez T.A., Zhang J., Dai Q., Hensler J.G. et al. Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am. J. Physiol. Circ. Physiol. 2013; 305: H1830-H1842. DOI: 10.1152/ajpheart.00224.2013.
33. Donovan M.J., Lin M.I., Wiegn P., Ringstedt T., Kraemer R., Hahn R. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development. 2000; 127 (21): 4531-40. DOI: 10.1242/dev.127.21.4531.
34. Wagner N., Wagner K.D., Theres H., Englert C., Schedl A., Scholz H. Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms’ tumor transcription factor Wt1. Genes. Dev. 2005; 19 (21): 2631-42. DOI: 10.1101/gad.346405.
35. Kermani P., Hempstead B. BDNF Actions in the Cardiovascular System: Roles in Development, Adulthood and Response to Injury. Front Physiol. 2019; 10: 455. DOI: 10.3389/fphys.2019.00455.
36. Anastasia A., Deinhardt K., Wang S., Martin L., Nichol D., Irmady K. et al. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS One. 2014; 9 (1): e87406. DOI: 10.1371/journal.pone.0087406.
37. Monisha K.G., Prabu P., Chokkalingam M., Murugesan R., Milenkovic D., Ahmed S.S. Clinical utility of brain-derived neurotrophic factor as a biomarker with left ventricular echocardiographic indices for potential diagnosis of coronary artery disease. Sci. Rep. 2020; 10: 1-8. DOI: 10.1038/s41598-020-73296-6.
38. Kaess B.M., Preis S.R., Lieb W., Beiser A.S., Yang Q., Chen T.C. et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J. Am. Heart Assoc. 2015; 4: e001544. DOI: 10.1161/JAHA.114.001544.
39. Han W., Zhang C., Wang H., Yang M., Guo Y., Li G. et al. Alterations of irisin, adropin, preptin and BDNF concentrations in coronary heart disease patients comorbid with depression. Ann. Transl. Med. 2019; 7: 298. DOI: 10.21037/atm.2019.05.77.
40. Takashio S., Sugiyama S., Yamamuro M., Takahama H., Hayashi T., Sugano Y. et al. Significance of Low Plasma Levels of Brain-Derived Neurotrophic Factor in Patients with Heart Failure. Am. J. Cardiol. 2015; 116: 243-9. DOI: 10.1016/j.amjcard.2015.04.018.
41. Fukushima A., Kinugawa S., Homma T., Masaki Y., Furihata T., Yokota T. et al. Serum Brain-Derived Neurotropic Factor Level Predicts Adverse Clinical Outcomes in Patients with Heart Failure. J. Card. Fail. 2015; 21: 300-6. DOI: 10.1016/j.cardfail.2015.01.003.
42. Kadowaki S., Shishido T., Honda Y., Narumi T., Otaki Y., Kinoshita D. et al. Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome. Heart Vessel. 2015; 31: 535-44. DOI: 10.1007/s00380-015-0628-6.
43. Shibata A., Hanatani A., Izumi Y., Kitada R., Iwata S., Yoshiyama M. Serum brain-derived neurotrophic factor level and exercise tolerance complement each other in predicting the prognosis of patients with heart failure. Heart Vessel. 2018; 33: 1325-33. DOI: 10.1007/s00380-018-1174-9.
44. Fukushima A., Kinugawa S., Homma T., Masaki Y., Furihata T., Yokota T. et al. Decreased serum brain-derived neurotrophic factor levels are correlated with exercise intolerance in patients with heart failure. Int. J. Cardiol. 2013; 168: e142-e144. DOI: 10.1016/j.ijcard.2013.08.073.
45. Prabu P., Poongothai S., Shanthirani C.S., Anjana R.M., Mohan V., Balasubramanyam M. Altered circulatory levels of miR-128, BDNF, cortisol and shortened telomeres in patients with type 2 diabetes and depression. Acta Diabetol. 2020; 57: 799-807. DOI: 10.1007/s00592-020-01486-9.
46. Liu Y., Sun L., Huan Y., Zhao H., Deng J. Application of bFGF and BDNF to improve angiogenesis and cardiac function. J. Surg. Res. 2006; 136 (1): 85-91. DOI: 10.1016/j.jss.2006.04.034.
47. Hiltunen J., Laurikainen A., Vakeva A., Meri S., Saarma M. Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. J. Pathol. 2001; 194 (2): 247-53. DOI: 10.1002/path.878.
48. Ejiri J., Inoue N., Kobayashi S., Shiraki R., Otsui K., Honjo T. et al. Possible Role of Brain-Derived Neurotrophic Factor in the Pathogenesis of Coronary Artery Disease. Circulation. 2005; 112: 2114-20. DOI: 10.1161/CIRCULATIONAHA.104.476903.
49. Okada S., Yokoyama M., Toko H., Tateno K., Moriya J., Shimizu I. et al. Brain-Derived Neurotrophic Factor Protects Against Cardiac Dysfunction After Myocardial Infarction via a Central Nervous System–Mediated Pathway. Arter. Thromb. Vasc. Biol. 2012; 32: 1902-9. DOI: 10.1161/ATVBAHA.112.248930.
50. Sustar A., Perkovic M.N., Erjavec G.N., Strac D.S., Pivac N. Association between reduced brain-derived neurotrophic factor concentration & coronary heart disease. Indian J. Med. Res. 2019; 150 (1): 43-9. DOI: 10.4103/ijmr.IJMR_1566_17.
51. Esmaeili F., Mansouri E., Emami M.A., Montazerghaem H., Hosseini Teshnizi S., Kheirandish M. et al. Association of Serum Level and DNA Methylation Status of Brain-Derived Neurotrophic Factor with the Severity of Coronary Artery Disease. Indian J. Clin. Biochem. 2022; 37 (2): 159-68. DOI: 10.1007/s12291-021-00974-1.
52. Yang X., Zhang M., Xie B., Peng Z., Manning J.R., Zimmerman R. et al. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovasc. Res. 2022: cvac096. DOI: 10.1093/cvr/cvac096.
53. Zhang Z., Wang B., Fei A. BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1α signaling in heart failure mice. Arch. Med. Sci. 2018; 15: 214-22. DOI: 10.5114/aoms.2018.81037.
54. Lee H.W., Ahmad M., Wang H.-W., Leenen F.H.H. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Exp. Physiol. 2017; 102: 314-28. DOI: 10.1113/EP086049.
55. Matsumoto J., Takada S., Kinugawa S., Furihata T., Nambu H., Kakutani N. et al. Brain-Derived Neurotrophic Factor Improves Limited Exercise Capacity in Mice with Heart Failure. Circulation. 2018; 138: 2064-6. DOI: 10.1161/CIRCULATIONAHA.118.035212.
56. Matsumoto J., Takada S., Furihata T., Nambu H., Kakutani N., Maekawa S. et al. Brain-Derived Neurotrophic Factor Improves Impaired Fatty Acid Oxidation Via the Activation of Adenosine Monophosphate-activated Protein Kinase-α—Proliferator-Activated Receptor-r Coactivator-1α Signaling in Skeletal Muscle of Mice With Heart Failure. Circ. Heart Fail. 2020; 14 (1): e005890. DOI: 10.1161/CIRCHEARTFAILURE.119.00589.
57. Nakano I., Kinugawa S., Hori H., Fukushima A., Yokota T., Takada S. et al. Serum Brain-Derived Neurotrophic Factor Levels Are Associated with Skeletal Muscle Function but Not with Muscle Mass in Patients with Heart Failure. Int. Heart J. 2020; 61: 96-102. DOI: 10.1536/ihj.19-400.
58. Lee H.W., Ahmad M., Wang H.W., Leenen F.H.H. Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides. 2020; 82: 102058. DOI: 10.1016/j.npep.2020.102058.
59. Pytka M.J., Pałasz-Borkowska A., Tarchalski J.L., Nowak A., Przymuszała-Staszak D., Schneider A. et al. The serum concentration of brain‑derived neurotrophic factor is lower in ambulatory and clinically stable patients with more advanced systolic heart failure. Pol. Arch. Intern. Med. 2022; 132 (10): 16303. DOI: 10.20452/pamw.16303.
60. Barman H.A., Sahin I., Atici A., Durmaz E., Yurtseven E., Ikitimur B. et al. Prognostic significance of brain-derived neurotrophic factor levels in patients with heart failure and reduced left ventricular ejection fraction. Anatol. J. Cardiol. 2019; 22 (6): 309-16. DOI: 10.14744/AnatolJCardiol.2019.37941.
61. Hang P., Zhao J., Sun L., Li M., Han Y., Du Z. et al. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats. J. Cell. Mol. Med. 2016; 21: 685-96. DOI: 10.1111/jcmm.13012.
62. Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y. et al. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic. Biol. Med. 2019; 130: 557-67. DOI: 10.1016/j.freeradbiomed.2018.11.024.
63. Liao D., Zhang C., Liu N., Cao L., Wang C., Feng Q. et al. Involvement of neurotrophic signaling in doxorubicin-induced cardiotoxicity. Exp. Ther. Med. 2020; 19 (2): 1129-35. DOI: 10.3892/etm.2019.8276.
64. Chan C.B., Ahuja P., Ye K. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Curr. Top. Med. Chem. 2019; 19 (24): 2188-204. DOI: 10.2174/1568026619666191010160643.
65. Moosaie F., Mohammadi S., Saghazadeh A., Dehghani Firouzabadi F., Rezaei N. Brain-derived neurotrophic factor in diabetes mellitus: A systematic review and meta-analysis. PLoS One. 2023; 18 (2): e0268816. DOI: 10.1371/journal.pone.0268816.
66. Eyileten C., Mirowska-Guzel D., Milanowski L., Zaremba M., Rosiak M., Cudna A. et al. Serum Brain-Derived Neurotrophic Factor is Related to Platelet Reactivity and Metformin Treatment in Adult Patients with Type 2 Diabetes Mellitus. Can. J. Diabetes. 2019; 43 (1): 19-26. DOI: 10.1016/j.jcjd.2018.01.014.
67. Sefidgari-Abrasi S., Roshangar L., Karimi P., Morshedi M., Rahimiyan-Heravan M., Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin. Nutr. 2021; 40 (1): 190-201. DOI: 10.1016/j.clnu.2020.05.004.
68. Gong J., Zhou F., Wang S.X.X., Xu J., Xiao F. Caveolin-3 protects diabetic hearts from acute myocardial infarction/reperfusion injury through β2AR, cAMP/PKA, and BDNF/TrkB signaling pathways. Aging (Albany NY). 2020; 12 (14): 14300-13. DOI: 10.18632/aging.103469.
69. Nakagawa T., Ono-Kishino M., Sugaru E., Yamanaka M., Taiji M., Noguchi H. Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metab. Res. Rev. 2002; 18 (3): 185-91. DOI: 10.1002/dmrr.290.
70. Wood J., Tse M.C.L., Yang X., Brobst D., Liu Z., Pang B.P.S. et al. BDNF mimetic alleviates body weight gain in obese mice by enhancing mitochondrial biogenesis in skeletal muscle. Metabolism. 2018; 87: 113-22. DOI: 10.1016/j.metabol.2018.06.007.
71. Cho S.J., Kang K.A., Piao M.J., Ryu Y.S., Fernando P.D.S.M., Zhen A.X. et al. 7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress. Biomol. Ther. (Seoul). 2019; 27 (1): 85-91. DOI: 10.4062/biomolther.2018.202.
72. Chan C.B., Tse M.C.L., Liu X., Zhang S., Schmidt R., Otten R. et al. Activation of Muscular TrkB by its Small Molecular Agonist 7,8-Dihydroxyflavone Sex-Dependently Regulates Energy Metabolism in Diet-Induced Obese Mice. Chem. Biol. 2015; 22: 355-68. DOI: 10.1016/j.chembiol.2015.02.003.
73. Allen R.S., Hanif A.M., Gogniat M.A., Prall B.C., Haider R., Aung M.H. et al. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. Eur. J. Neurosci. 2018; 47 (10): 1254-65. DOI: 10.1111/ejn.13909.
74. Rahman F., Himali J.J., Yin X., Beiser A.S., Ellinor P.T., Lubitz S.A. et al. Serum brain-derived neurotrophic factor and risk of atrial fibrillation. Am. Heart J. 2017; 183: 69-73. DOI: 10.1016/j.ahj.2016.07.027.