Аннотация
Цель исследования — провести сравнительных анализ гено- и фенотипических маркёров патогенности изолятов Corynebacterium spp. от больных с воспалительными заболеваниями респираторного тракта и практически здоровых лиц. У изолятов Corynebacterium spp. от больных (99 шт.) и практически здоровых лиц (33 шт.), идентифицированных масс-спектрометрическим методом, определены фено- и генотипические маркёры патогенности методом полногеномного секвенирования. Высоковирулентные изоляты C. falsenii R132 и С. striatum R546 от больных обладали генами патогенности (DIP0733, fadD2, otsA, deoC, pld и spaD, spaE, spaF, srtB, srtC, fadD2, pccB, pccB1, pccB2, otsA, deoC, cwlh соответственно). Умеренно- и низковирулентные штаммы, выделенные от больных (C. amycolatum R2, R3, C. afermentans R12, С. pseudodiphtheriticum R7, R9, R11) и практически здоровых лиц (С. pseudodiphtheriticum Дон2,4,5,6), содержали гены патогенности, однако их фенотипические проявления отсутствовали у изолятов от здоровых лиц. При проведении микробиологической диагностики воспалительных заболеваний респираторного тракта диагностическое значение имеет выделение вида С. striatum, и C. falsenii. В отношении других видов недифтерийных коринебактерий (C. amycolatum, C. afermentans, С. pseudodiphtheriticum) необходимо учитывать их штаммовую принадлежность, принимая во внимание фенотипические маркёры патогенности и количество в биоматериале.
Annotation
The aim of the study is to conduct a comparative analysis of geno– and phenotypic markers of pathogenicity of Corynebacterium spp. isolates from patients with inflammatory diseases of the respiratory tract and practically healthy persons. In isolates of Corynebacterium spp. pheno- and genotypic markers of pathogenicity were determined using genome-wide sequencing in patients (99 pcs.) and practically healthy individuals (33 pcs.) identified by mass spectrometry. Highly virulent isolates of C. falsenii R132 and C. striatum R546 from patients possessed pathogenicity genes (DIP0733, fadD2, otsA, deoC, pld and spaD, spaE, spaF, srtB, srtC, fadD2, pccB, pccB1, pccB2, otsA, deoC, cwlh, respectively). Medium- and low-virulent strains isolated from patients (C. amycolatum R2, R3, C. afermentans R12,C. pseudodiphtheriticum R7, R9, R11) and practically healthy individuals (C. pseudodiphtheriticum R2,4,5,6) contained pathogenicity genes, but their phenotypic manifestations were absent in isolates from healthy individuals. Thus, when conducting microbiological diagnostics of inflammatory diseases of the respiratory tract, the isolation of the species C. striatum, as well as C. falsenii, is of diagnostic importance. With respect to other species of non-diphtheria corynebacteria (C. amycolatum, C. afermentans, C. pseudodiphtheriticum), it is necessary to take into account their strain affiliation, taking into account the phenotypic markers of pathogenicity and the amount in the biomaterial.
Список литературы
1.Valdoleiros S.R., Neves C.S., Carvalho J.A., Gonçalves C., Pereira P., Vasconcelos O. et al. Infection and colonization by Corynebacterium pseudodiphtheriticum: a 9-year observational study in a university central hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39 (9): 1745-52. DOI: 10.1007/s10096-020-03891-y.
2.Chauvelot P., Ferry T., Tafani V., Diot A., Tasse J., Conrad A. et al. Bone and joint infection involving Corynebacterium spp.: from clinical features to pathophysiological pathways. Front Med. (Lausanne). 2021; 7: 539501. DOI: 10.3389/fmed.2020.539501.
3.Clariot S., Constant О., Lepeule R., Fihman V., Razazi K., Cook F. et al. Clinical relevance and impact of Corynebacterium isolation in lower respiratory tract of critically ill patients requiring mechanical ventilation. Infection. 2020; 48(3): 413-20. DOI:10.1007/s15010-020-01411-w.
4.Heggendornn L.H., Gomes S.W.C., Sant’Anna L.O., Longo L., Farsura A.F., Ramos J.N. et al. Virulence potential and characteristics of multidrug-resistant Corynebacterium amycolatum strains isolated from nosocomial infections. Ijsrm. Human. 2022; 22(4): 1-24. DOI: 10.25166/IJSRM/2022.22.4.2.
5.Kang Y., Chen S., Zheng B., Du X., Li Z., Tan Z. et al. Epidemiological investigation of hospital transmission of Corynebacterium striatum infection by core genome multilocus sequence typing approach. Microbiol. Spectr. 2023; 11(1): e0149022. DOI: 10.1128/spectrum.01490-22.
6.Wang X., Zhou H., Chen D., Du P., Lan R., Qiu X. et al. Whole-genome sequencing reveals a prolonged and persistent intrahospital transmission of Corynebacterium striatum, an emerging multidrug-resistant pathogen. J. Clin. Microbiol. 2019; 57(9): e00683-19. DOI: 10.1128/JCM.00683-19.
7.Kharseeva G.G., Voronina N.A., Gasretova T.D., Tyukavkina S.Yu., Sylka O.I., Mironov A.Yu. Antibiotic sensitivity of Corynebacterium non diphtheriae strains isolated in hospitals in Rostov-on-Don and the Rostov region. Klinicheskaya Laboratornaya Diagnostika. 2017; 62(8): 502-6. (in Russian)
8.Wang X., Zhou H., Du P., Lan R., Chen D., Dong A. et al. Genomic epidemiology of Corynebacterium striatum from three regions of China: an emerging national nosocomial epidemic. J. Hosp. Infect. 2021; 110: 67-75. DOI: 10.1016/j.jhin.2020.10.005.
9.LPSN — List of Prokaryotic names with Standing in Nomenclature. Available at: https://www.bacterio.net/genus/corynebacterium. (accessed 2 august 2023).
10.Shariff M., Aditi A., Beri K. Corynebacterium striatum: an emerging respiratory pathogen. J. Infect. Dev. Ctries. 2018; 12(7): 581-6. DOI:10.3855/jidc.10406.
11.Dazas M., Badell E., Carmi-Leroy A., Criscuolo A., Brisse S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. Int. J. Syst. Evol. Microbiol. 2018; 68: 3826-31. DOI: 10.1099/ijsem.0.003069.
12.Prygiel M., Polak M., Mosiej E., Wdowiak K., Formińska K., Zasada A. A. New Corynebacterium species with the potential to produce diphtheria toxin. Pathogens. 2022; 11(11): 1264. DOI: 10.3390/pathogens11111264.
13.Badell E., Hennart М., Rodrigues С., Passet V. , Dazas M., Panunzi L. et al. Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex. Res. Microbiol. 2020; 171(3-4): 122-7. DOI: 10.1016/j.resmic.2020.02.003.
14.Möller J., Busch A., Berens C., Hotzel H., Burkovski A. Newly isolated animal pathogen Corynebacterium silvaticum is cytotoxic to human epithelial cells. Int. J. Mol. Sci. 2021; 22(7): 3549. DOI: 10.3390/ijms22073549.
15.Möller J., Musella L., Melnikov V., Geißdörfer W., Burkovski A., Sangal V. Phylogenomic characterisation of a novel corynebacterial species pathogenic to animals. Antonie Van Leeuwenhoek. 2020; 113(8): 1225-39. DOI: 10.1007/s10482-020-01430-5.
16.de Oliveira Sant’Anna L., Dos Santos L.S., Araújo M.R.B., da Rocha D.J.P.G., Ramos J.N., Baio P.V.P. et al. Corynebacterium guaraldiae sp. nov.: a new species of Corynebacterium from human infections. Braz. J. Microbiol. 2023; 54(2): 779-90. DOI: 10.1007/s42770-023-00938-y.
17.Cappelli E.A., Ksiezarek M., Wolf J., Neumann-Schaal M., Ribeiro T.G., Peixe L. Bacterial diversity of the female urinary microbiome: description of eight new Corynebacterium species. Microorganisms. 2023; 11(2): 388. DOI: 10.3390/microorganisms11020388.
18.Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinformatics. 2020; 70(1): e102. DOI: 10.1002/cpbi.102.
19.Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013; 29(8): 1072-5. DOI:10.1093/bioinformatics/btt086.
20.Database of virulence factors (VFDB). Available at: http://www. mgc.ac.cn/VFs/ (accessed 2 august 2023).
21.Seemann T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics. 2014; 30(14): 2068-9. DOI:10.1093/bioinformatics/btu153.
22.Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T.G. et al. Roary: Rapid large-scale prokaryote pan genome analysis, Bioinformatics. 2015; 31(22): 3691-3. DOI: http://doi. org/10.1093/bioinformatics/btv421.
23.Ott L., Höller M., Rheinlaender J., Schäffer T.E., Hensel M., Burkovski A. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriае with host cells. BMC Microbiology. 2010; 10: 257. DOI: 10.1186/1471-2180-10-257.
24.Tsai C.J.Y., Loh J. M. S., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016; 7(3): 214-29.
25.Labinskaya A.S., Kostyukova N.N., Ivanova S.M. Manual of Medical Microbiology. Private medical microbiology and etiological diagnosis of infections. Moscow: Meditsina; 2012. ISBN 978-5-9518-0412-9. (in Russian)
26.Li G., Wang S., Zhao S., Zhou Y., Pan X. Whole genome sequence of a non-toxigenic Corynebacterium diphtheriae strain from a hospital in southeastern China. BMC Genom. Data. 2021; 22(1): 42. DOI: 10.1186/s12863-021-00998-9.
27.Sabbadini P.S., Assis M.C., Trost E., Gomes D.L., Moreira L.O., Dos Santos C.S. et al. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in Hep-2 cells. Microb. Pathog. 2012; 52(3): 165-76. DOI: 10.1016/j.micpath.2011.12.003.
28.Santana-Jorge K.T., Santos T.M., Tartaglia N.R., Aguiar E.L., Souza R.F., Mariutti R.B. et al. Putative virulence factors of Corynebacterium pseudotuberculosis FRC41: vaccine potential and protein expression. Microb. Cell Fact. 2016; 15: 83. DOI: 10.1186/s12934-016-0479-6.
29.Guimarães A.D.S., Borges F., Pauletti R.B., Seyffert N., Ribeiro D., Lage A.P. et al. Caseous lymphadenitis: epidemiology, diagnosis, and control. OAB J. 2011; 2: 33-43.
30.Timms V.J., Nguyen, T., Crighton, T., Sintchenko V. Genome-wide comparison of Corynebacterium diphtheriae isolates from Australia identifies differences in the Pan-genomes between respiratory and cutaneous strains. BMC Genomics. 2018; 19: 869. DOI: 10.1186/s12864-018-5147-2.
31.Bernard K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012; 50 (10): 3152-58. DOI: 10.1128/JCM.00796-12.
32.Qiu J., Shi Y, Zhao F, Xu Y., Xu H., Dai Y. et al. The pan-genomic analysis of Corynebacterium striatum revealed its genetic characteristics as an emerging multidrug-resistant pathogen. Evol. Bioinform. Online. 2023; 19:11769343231191481. DOI: 10.1177/11769343231191481.
33.Donahue E.H., Dawson L.F., Valiente E., Firth-Clark S., Major M.R., Littler E. et al. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC Microbiol. 2014; 14: 219. DOI: 10.1186/s12866-014-0219-1.
34.Kang C.Y., Huang I.H., Chou C.C., Tsai-Yu W., Chang J.C., Hsiao Y.Y. et al. Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. J. Biol. Chem. 2020; 295: 3734-45. DOI: 10.1074/jbc.RA119.011322.
35.Chambers C.J., Roberts A.K., Shone C.C., Acharya K.R. Structure and function of a Clostridium difficile sortase enzyme. Sci. Rep. 2015; 5: 9449. DOI: 10.1038/srep09449.
36.Kharseeva G.G., Mangutov E.O., But O.M., Chepusova A.V., Alutina E.L. Analysis of the frequency of isolation of non-diphtheria Сorynebacteria from patients with inflammatory diseases of the respiratory tract. Klinicheskaya Laboratornaya Diagnostika. 2019; 64 (7): 430-4. DOI: 10.18821/0869-2084-2019-64-7-430-434. (in Russian)