МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ И МЕТОДЫ ДИАГНОСТИКИ ГИПЕРПРОДУКЦИИ ИНТЕРФЕРОНА I ТИПА ПРИ СИСТЕМНОЙ КРАСНОЙ ВОЛЧАНКЕ (ОБЗОР ЛИТЕРАТУРЫ)
Doi: 10.51620/0869-2084-2025-70-1-34-43 EDN: EHDOGY ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
В современных исследованиях, посвященных изучению маркеров патогенеза системной красной волчанки (СКВ), подчеркива-
ется фундаментальная роль гиперпродукции интерферона типа I (ИФН типа I). Последствия избыточной активации ин-
терферонового пути отражаются в формировании стойких иммунопатологических нарушений, проявляющихся активацией
врожденной и адаптивной иммунной системы, потерей иммунологической толерантности. Обзор обобщает накопленные
данные об известных на сегодняшний день триггерах и источниках синтеза и секреции ИФН типа I, раскрывает его пато-
генетическую роль и различные молекулярные механизмы, лежащие в основе развития СКВ, структурирует сведения о со-
временных методах клинической лабораторной диагностики нарушений в системе интерферонов.
Annotation
Current studies on the pathogenesis of systemic lupus erythematosus (SLE) emphasize the key role of persistent interferon type I (IFN
type I) hyperproduction. The consequences of excessive activation of the interferon pathway are reflected in the formation of persistent
immunological abnormalities manifested by stimulation of the innate and adaptive immune system, as well as loss of immunological
tolerance. This review summarizes the accumulated data on the currently known triggers and sources of IFN type I, as well as reveals
its pathogenetic role and various molecular mechanisms underlying the development of SLE, and also structures information on
modern methods of laboratory diagnostics of disorders in the interferon system.
Key words: clinical laboratory diagnostics; systemic lupus erythematosus; interferon type I; pathogenesis; autoimmunity
Список литературы
Л И Т Е РАТ У РА ( п п . 2 — 7 , 9 — 1 8 , 2 0 — 8 0 , 8 2 — 9 1
с м . R E F E R E N C E S )
1. Насонов Е.Л., Соловьёв С.К., Аршинов А.В. Системная красная
волчанка: история и современность. Научно-практическая рев-
матология. 2022; 60(4): 397-412. DOI: 10.47360/1995-4484-2022-
397-412.
8. Насонов Е.Л., Авдеева А.С., Попкова Т.В. Новые возможности
фармакотерапии системной красной волчанки: перспективы при-
менения анифролумаба (моноклональные антитела к рецепторам
интерферона типа I). Научно-практическая ревматология. 2021;
59(5): 537-46. DOI: 10.47360/1995-4484-2021-537-546.
19. Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматиче-
ские заболевания, связанные с интерфероном типа I: новые дан-
ные. Научно-практическая ревматология. 2019; 57(4): 452-61. DOI: 10.14412/1995-4484-2019-452-46.
81. Насонов Е.Л., Авдеева А.С., Решетняк Т.М., Алексанкин А.П.,
Рубцов Ю.П. Роль нетоза в патогенезе иммуновоспалительных
ревматических заболеваний. Научно-практическая ревматология. 2023; 61(5): 513-30. DOI: 10.47360/1995-4484-2023-513-530.
96. Васин А.В., Плотникова М.А., Клотченко С.А., Гюлиханданова
Н.Е., Ложков А.А. Многопараметрическая диагностическая тест-
система для количественного определения уровня мРНК генов
RIG-1, IFIT-1, IFIH-1 человека. Патент РФ № RU 2782428; 2022.
97. Авдеева А.С. Интерферонопатии типа I как один из механизмов
развития иммуновоспалительных ревматических заболеваний
(обзор литературы). Клиническая лабораторная диагностика.
2023; 68 (9): 527-34. DOI: 10.51620/0869-2084-2023-68-9-527-534.
R E F E R E NC E S
1. Nasonov E.L., Solov`yov S.K., Arshinov A.V. Systemic lupus erythematosus:
history and modernity. Nauchno-prakticheskaya revmatologiya. 2022;
60(4): 397-412. DOI: 10.47360/1995-4484-2022-397-412. Марданлы С.Г., Ротанов С.В., Гашенко Т.Ю., Помазанов В.В., По-
пова Т.В., Жданович А.В. Определение концентрации D-димера в
плазме крови человека иммуноферментной технологией (in Russian)
2. Kaul A., Gordon C., Crow M.K., Touma Z., Urowitz M.B. Systemic
lupus erythematosus. Nat. Rev. Dis. Primers. 2016; 2: 16039. DOI:
10.1038/nrdp.2016.39.
3. Leffers H.C.B., Lange T., Collins C., Ulff-Møller C.J., Jacobsen S. The
study of interactions between genome and exposome in the development
of systemic lupus erythematosus. Autoimmun. Rev. 2019; 18(4):
382-92. DOI: 10.1016/j.autrev.2018.11.005.
4. Tsokos G.C. Autoimmunity and organ damage in systemic lupus
erythematosus. Nat. Immunol. 2020; 21(6): 605-14. DOI: 10.1038/
s41590-020-0677-6.
5. Ambrose N., Morgan T.A., Galloway J., Ionnoau Y., Beresford
M.W. et al. Differences in disease phenotype and severity
in SLE across age groups. Lupus. 2016; 25(14): 1542-50. DOI:
10.1177/0961203316644333.
6. Rönnblom L., Leonard D. Interferon pathway in SLE: one key to
unlocking the mystery of the disease. Lupus Sci. Med. 2019; 6(1):
e000270. DOI: 10.1136/lupus-2018-000270.
7. Chaussabel D., Quinn C., Shen J., Patel P., Glaser C. et al. A modular
analysis framework for blood genomics studies: application to systemic
lupus erythematosus. Immunity. 2008; 29(1): 150-64. DOI:
10.1016/j.immuni.2008.05.012.
8. Nasonov E.L., Avdeeva A.S., Popkova T.V. New possibilities of pharmacotherapy
for systemic lupus erythematosus: Prospects for the use
of anifrolumab (monoclonal antibodies to type I interferon receptor). Nauchno-prakticheskaya revmatologiya. 2021; 59(5): 537-46. DOI:
10.47360/1995-4484-2021-537-546. (in Russian)
9. Petri M., Fu W., Ranger A., Allaire N., Cullen P. et al. Association
between changes in gene signatures expression and disease activity
among patients with systemic lupus erythematosus. BMC Med. Genomics. 2019;
12(1): 4. DOI: 10.1186/s12920-018-0468-1.
10. Eloranta M.L., Rönnblom L. Cause and consequences of the activated
type I interferon system in SLE. J. Mol. Med. (Berl.). 2016; 94(10):
1103-10. DOI: 10.1007/s00109-016-1421-4.
11. Nocturne G., Mariette X. Interferon signature in systemic autoimmune
diseases: what does it mean? RMD Open. 2022; 8(2): e002687. DOI: 10.1136/rmdopen-2022-002687.
12. Barber M.R.W., Drenkard C., Falasinnu T., Hoi A., Mak A. et al. Global
epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2021;
17(9): 515-32. DOI: 10. 1038/s41584-021-00668-1.
13. Theofilopoulos A.N., Baccala R., Beutler B., Kono D.H. Type I interferons
(alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 2005; 23: 307-36. DOI: 10.1146/annurev.immunol.23.021704.115843.
14. Crow M.K. Type I interferon in the pathogenesis of lupus. J. Immunol. 2014; 192(12): 5459-68. DOI: 10.4049/jimmunol.1002795.
15. Luo S., Wang Y., Zhao M., Lu Q. The important roles of type I interferon
and interferon-inducible genes in systemic lupus erythematosus. Int.
Immunopharmacol. 2016; 40: 542-9. DOI: 10.1016/j.intimp.
2016.10.012. 16. Moulton V.R., Suarez-Fueyo A., Meidan E., Li H., Tsokos G.C. et al. Pathogenesis of human systemic lupus erythematosus: A cellular perspective. Trends
Mol. Med. 2017; 23(7): 615-35. DOI: 10.1016/j.molmed.
2017.05.006.
17. Gresser I. Biologic effects of interferons. J. Invest. Dermatol. 1990;
95(6 Suppl.): 66S-71S. DOI: 10.1111/1523-1747.ep12874776.
18. Ivashkiv L.B., Donlin L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014; 4(1): 36-49. DOI: 10.1038/nri3581.
19. Nasonov E.L., Avdeeva A.S. Immunoinflammatory rheumatic diseases
associated with type I interferon: new evidence. Nauchno-prakticheskaya
revmatologiya. 2019; 57(4): 452-61. DOI: 10.14412/1995-4484-
2019-452-46. (in Russian)
20. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions
of type I and type III interferons. Immunity. 2019; 50(4): 907-23. DOI: 10.1016/j.immuni.2019.03.025.
21. Lee A.J., Ashkar A.A. The Dual nature of type I and type II interferons. Front. Immunol. 2018; 9: 2061. DOI: 10.3389/fimmu.2018.02061.
22. Turnier J.L., Kahlenberg J.M. The Role of cutaneous type I IFNs in autoimmune
and autoinflammatory diseases. J. Immunol. 2020; 205(11):
2941-50. DOI: 10.4049/jimmunol.2000596.
23. Andreakos E., Zanoni I., Galani I.E. Lambda interferons come to
light: dual function cytokines mediating antiviral immunity and damage
control. Curr. Opin. Immunol. 2019; 56: 67-75. DOI: 10.1016/j.
coi.2018.10.007.
24. Barrat F.J., Crow M.K., Ivashkiv L.B. Interferon target-gene expression
and epigenomic signatures in health and disease. Nat. Immunol. 2019; 20(12): 1574-83. DOI: 10.1038/s41590-019-0466-2.
25. Eloranta M.L., Alm G.V., Rönnblom L. Disease mechanisms in rheumatology-
tools and pathways: plasmacytoid dendritic cells and their
role in autoimmune rheumatic diseases. Arthritis Rheum. 2013; 65(4):
853-63. DOI: 10.1002/art.37821.
26. Rönnblom L., Alm G.V. A pivotal role for the natural interferon alphaproducing
cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J.
Exp. Med. 2001; 194(12): F59-F63. DOI: 10.1084/jem.194.12.
f59.
27. Steinberg A.D., Baron S., Talal N. The pathogenesis of autoimmunity
in New Zealand mice, I. Induction of antinucleic acid antibodies by
polyinosinic-polycytidylic acid. Proc. Natl. Acad. Sci. U S A. 1969;
63(4): 1102-7. DOI: 10.1073/pnas.63.4.1102.
28. Hooks J.J., Moutsopoulos H.M., Geis S.A., Stahl N.I., Decker J.L. et al. Immune interferon in the circulation of patients with autoimmune
disease. N. Engl. J. Med. 1979; 301(1): 5-8. DOI: 10.1056/
NEJM197907053010102.
29. Preble O.T., Black R.J., Friedman R.M., Klippel J.H., Vilcek J. Sys-
temic lupus erythematosus: presence in human serum of an unusual
acid-labile leukocyte interferon. Science. 1982; 216(4544): 429-31. DOI: 10.1126/science.6176024.
30. Grimley P.M., Davis G.L., Kang Y.H., Dooley J.S., Strohmaier J. et
al. Tubuloreticular inclusions in peripheral blood mononuclear cells
related to systemic therapy with alpha-interferon. Lab. Invest. 1985;
52(6): 638-49.
31. Rönnblom L.E., Alm G.V., Oberg K.E. Possible induction of systemic
lupus erythematosus by interferon-alpha treatment in a patient with
a malignant carcinoid tumour. J. Intern Med. 1990; 227(3): 207-10. DOI: 10.1111/j.1365-2796.1990.tb00144.x.
32. Tahara H., Kojima A., Hirokawa T., Oyama T., Naganuma A. et al. Systemic sclerosis after interferon alphacon-1 therapy for hepatitis
C. Intern. Med. 2007; 46(8): 473-6. DOI: 10.2169/internalmedicine.
46.6328.
33. Blanco P., Palucka A.K., Gill M., Pascual V., Banchereau J. Induction
of dendritic cell differentiation by IFN-alpha in systemic lupus
erythematosus. Science. 2001; 294(5546): 1540-3. DOI: 10.1126/science.
1064890.
34. Banchereau J., Briere F., Caux C., Davoust J., Lebecque S. et al. Immunobiology
of dendritic cells. Annu. Rev. Immunol. 2000; 18: 767-811. DOI: 10.1146/annurev.immunol.18.1.767.
35. Steinman R.M., Hawiger D., Nussenzweig M.C. Tolerogenic dendritic
cells. Annu. Rev. Immunol. 2003; 21: 685-711. DOI: 10.1146/annurev.
immunol.21.120601.141040.
36. Siegal F.P., Kadowaki N., Shodell M., Fitzgerald-Bocarsly P.A., Shah
K., Ho S. et al. The nature of the principal type 1 interferon-producing
cells in human blood. Science. 1999; 284(5421): 1835-7. DOI:
10.1126/science.284.5421.1835.
37. Bennett L., Palucka A.K., Arce E., Cantrell V., Borvak J., Banchereau
J., Pascual V. Interferon and granulopoiesis signatures in systemic lupus
erythematosus blood. J. Exp. Med. 2003; 197(6): 711-23. DOI:
10.1084/jem.20021553.
38. Baechler E.C., BatliwallaRees F.M., Karypis G., Gaffney P.M., Ortmann
W.A. et al. Interferon-inducible gene expression signature in peripheral
blood cells of patients with severe lupus. Proc. Natl. Acad. Sci
USA. 2003; 100(5): 2610-5. DOI: 10.1073/pnas.0337679100.
39. Crow M.K., Kirou K.A., Wohlgemuth J. Microarray analysis of interferon-
regulated genes in SLE. Autoimmunity. 2003; 36(8): 481-90. DOI: 10.1080/08916930310001625952.
40. Han G.M., Chen S.L., Shen N., Ye S., Bao C.D., Gu Y.Y. Analysis of
gene expression profiles in human systemic lupus erythematosus using
oligonucleotide microarray. Genes. Immun. 2003; 4(3): 177-86. DOI:
10.1038/sj.gene.6363966.
41. Saulescu I., Ionescu R., Opris-Belinski D. Interferon in systemic lupus
erythematosus-A halfway between monogenic autoinflammatory and
autoimmune disease. Heliyon. 2022; 8(11): e11741. DOI: 10.1016/j.
heliyon.2022.e11741.
42. Chasset F., Arnaud L. Targeting interferons and their pathways in
systemic lupus erythematosus. Autoimmun. Rev. 2018; 17(1): 44-52. DOI: 10.1016/j.autrev.2017.11.009.
43. Wardowska A. The epigenetic face of lupus: Focus on antigen-presenting
cells. Int. Immunopharmacol. 2020; 81: 106262. DOI: 10.1016/j.
intimp.2020.106262.
44. Reizis B. Plasmacytoid dendritic cells: development, regulation,
and function. Immunity. 2019; 50(1): 37-50. DOI: 10.1016/j.immuni.
2018.12.027.
45. Rönnblom L., Alm G.V. Systemic lupus erythematosus and the type
I interferon system. Arthritis Res. Ther. 2003; 5(2): 68-75. DOI:
10.1186/ar625.
46. Rowland S.L., Riggs J.M., Gilfillan S., Bugatti M., Vermi W. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates
autoimmunity in a lupus model. J. Exp. Med. 2014; 211(10): 1977-91. DOI: 10.1084/jem.20132620.
47. Baccala R., Gonzalez-Quintial R., Blasius A.L., Rimann I., Ozato K. et
al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid
dendritic cells in the pathogenesis of lupus. Proc. Natl. Acad. Sci
U S A. 2013; 110(8): 2940-5. DOI: 10.1073/pnas.1222798110.
48. Sisirak V., Ganguly D., Lewis K.L., Couillault C., Tanaka L. et al. Genetic
evidence for the role of plasmacytoid dendritic cells in systemic
lupus erythematosus. J. Exp. Med. 2014; 211(10):1969-76. DOI:
10.1084/jem.20132522.
49. Thanarajasingam U., Muppirala A.N., Jensen M.A., Ghodke-Puranik
Y., Dorschner J.M. et al. Type I interferon predicts an alternate immune
system phenotype in systemic lupus erythematosus. ACR Open Rheumatol. 2019;
1(8): 499-506. DOI: 10.1002/acr2.11073.
50. Der E., Suryawanshi H., Morozov P., Kustagi M., Goilav B. et al. Accelerating
medicines partnership rheumatoid arthritis and systemic
lupus erythematosus (AMP RA/SLE) Consortium. Tubular cell and keratinocyte
single-cell transcriptomics applied to lupus nephritis reveal
type I IFN and fibrosis relevant pathways. Nat. Immunol. 2019; 20(7):
915-27. DOI: 10.1038/s41590-019-0386-1.
51. Infante B., Mercuri S., Dello Strologo A., Franzin R., Catalano V. et
al. Unraveling the Link between interferon-α and systemic lupus erythematosus:
from the molecular mechanisms to target therapies. Int. J.
Mol. Sci. 2022; 23(24): 15998. DOI: 10.3390/ijms232415998.
52. Blomberg S., Eloranta M.L., Cederblad B., Nordlin K., Alm G.V., Rönnblom
L. Presence of cutaneous interferon-alpha producing cells in patients
with systemic lupus erythematosus. Lupus. 2001; 10(7): 484-90. DOI: 10.1191/096120301678416042.
53. Farkas L., Beiske K., Lund-Johansen F., Brandtzaeg P., Jahnsen F.L. Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing
cells) accumulate in cutaneous lupus erythematosus lesions. Am. J.
Pathol. 2001; 159(1): 237-43. DOI: 10.1016/s0002-9440(10)61689-6.
54. Fiore N., Castellano G., Blasi A., Capobianco C., Loverre A. et al. Immature myeloid and plasmacytoid dendritic cells infiltrate renal tubulointerstitium
in patients with lupus nephritis. Mol. Immunol. 2008;
45(1): 259-65. DOI: 10.1016/j.molimm.2007.04.029.
55. Furie R, Werth VP, Merola JF, Stevenson L, Reynolds TL, et al. Monoclonal
antibody targeting BDCA2 ameliorates skin lesions in systemic
lupus erythematosus. J. Clin. Invest. 2019; 129(3): 1359-71. DOI:
10.1172/JCI124466.
56. Kumaran Satyanarayanan S., El Kebir D., Soboh S., Butenko S.,
Sekheri M. et al. IFN-β is a macrophage-derived effector cytokine facilitating
the resolution of bacterial inflammation. Nat. Commun. 2019;
10(1): 3471. DOI: 10.1038/s41467-019-10903-9.
57. Sarkar M.K., Hile G.A., Tsoi L.C., Xing X., Liu J. et al. Photosensitivity
and type I IFN responses in cutaneous lupus are driven by
epidermal-derived interferon kappa. Ann. Rheum. Dis. 2018; 77(11):
1653-64. DOI: 10.1136/annrheumdis-2018-213197.
58. Zahn S., Rehkämper C., Kümmerer B.M., Ferring-Schmidt S., Bieber
T. et al. Evidence for a pathophysiological role of keratinocyte-derived
type III interferon (IFNλ) in cutaneous lupus erythematosus. J. Invest.
Dermatol. 2011; 131(1): 133-40. DOI: 10.1038/jid.2010.244.
59. Der E., Ranabothu S., Suryawanshi H., Akat K.M., Clancy R. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in
lupus nephritis. JCI Insight. 2017; 2(9): e93009. DOI: 10.1172/jci.insight.
93009.
60. Hervier B., Beziat V., Haroche J., Mathian A., Lebon P. et al. Phenotype
and function of natural killer cells in systemic lupus erythematosus:
excess interferon-γ production in patients with active disease. Arthritis Rheum. 2011; 63(6): 1698-706. DOI: 10.1002/art.30313.
61. Porat A., Giat E., Kowal C., He M., Son M. et al. DNA-mediated interferon
signature induction by SLE serum occurs in monocytes through
two pathways: A mechanism to inhibit both pathways. Front Immunol. 2018; 9: 2824. DOI: 10.3389/fimmu.2018.02824.
62. Palanichamy A., Bauer J.W., Yalavarthi S., Meednu N., Barnard J. et al. Neutrophil-mediated IFN activation in the bone marrow alters B cell
development in human and murine systemic lupus erythematosus. J.
Immunol. 2014; 192(3): 906-18. DOI: 10.4049/jimmunol.1302112.
63. Psarras A., Wittmann M., Vital E.M. Emerging concepts of type I interferons
in SLE pathogenesis and therapy. Nat. Rev. Rheumatol. 2022;
18(10): 575-90. DOI: 10.1038/s41584-022-00826-z.
64. Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated
signalling. Nat. Rev. Immunol. 2005; 5(5): 375-86. DOI: 10.1038/
nri1604.
65. Gürtler C., Bowie A.G. Innate immune detection of microbial nucleic
acids. Trends Microbiol. 2013; 21(8): 413-20. DOI: 10.1016/j.
tim.2013.04.004.
66. Barrat F.J., Elkon K.B., Fitzgerald K.A. Importance of nucleic acid recognition
in inflammation and autoimmunity. Annu. Rev. Med. 2016; 67:
323-36. DOI: 10.1146/annurev-med-052814-023338.
67. Di Donato G., d’Angelo D.M., Breda L., Chiarelli F. Monogenic Autoinflammatory
Diseases: State of the Art and Future Perspectives. Int. J.
Mol. Sci. 2021; 22(12): 6360. DOI: 10.3390/ijms22126360.
68. Frizinsky S, Haj-Yahia S, Machnes Maayan D, Lifshitz Y, Maoz-Segal
R, et al. The innate immune perspective of autoimmune and autoinflammatory
conditions. Rheumatology (Oxford). 2019; 58(Suppl. 6):
vi1-vi8. DOI: 10.1093/rheumatology/kez387.
69. Christensen S.R., Shupe J., Nickerson K., Kashgarian M., Flavell
R.A., Shlomchik M.J. Toll-like receptor 7 and TLR9 dictate autoantibody
specificity and have opposing inflammatory and regulatory
roles in a murine model of lupus. Immunity. 2006; 25(3): 417-28. DOI:
10.1016/j.immuni.2006.07.013.
70. Kono D.H., Baccala R., Theofilopoulos A.N. TLRs and interferons: a
central paradigm in autoimmunity. Curr. Opin. Immunol. 2013; 25(6):
720-7. DOI: 10.1016/j.coi.2013.10.006.
71. García-Ortiz H., Velázquez-Cruz R., Espinosa-Rosales F., Jiménez-
Morales S., Baca V., Orozco L. Association of TLR7 copy number
variation with susceptibility to childhood-onset systemic lupus erythematosus
in Mexican population. Ann. Rheum. Dis. 2010; 69(10): 1861-
5. DOI: 10.1136/ard.2009.124313.
72. Tilstra J.S., John S., Gordon R.A., Leibler C., Kashgarian M, et al. B
cell-intrinsic TLR9 expression is protective in murine lupus. J. Clin.
Invest. 2020; 130(6): 3172-87. DOI: 10.1172/JCI132328.
73. Kawai T., Akira S. TLR signaling. Cell Death. Differ. 2006; 13(5):
816-25. DOI: 10.1038/sj.cdd.4401850.
74. Wahadat M.J., Bodewes I.L.A., Maria N.I., van Helden-Meeuwsen
C.G., van Dijk-Hummelman A. et al. Type I IFN signature in childhood-
onset systemic lupus erythematosus: a conspiracy of DNA- and
RNA-sensing receptors? Arthritis Res. Ther. 2018; 20(1): 4. DOI:
10.1186/s13075-017-1501-z.
75. Ramaswamy M., Tummala R., Streicher K., Nogueira da Costa A.,
Brohawn P.Z. The pathogenesis, molecular mechanisms, and therapeutic
potential of the interferon pathway in systemic lupus erythematosus
and other autoimmune diseases. Int. J. Mol. Sci. 2021; 22(20): 11286. DOI: 10.3390/ijms222011286.
76. Canesso M.C.C., Lemos L., Neves T.C., Marim F.M., Castro T.B.R. et
al. The cytosolic sensor STING is required for intestinal homeostasis
and control of inflammation. Mucosal. Immunol. 2018; 11(3): 820-34. DOI: 10.1038/mi.2017.88.
77. Manfredo Vieira S., Hiltensperger M., Kumar V., Zegarra-Ruiz D.,
Dehner C. et al. Translocation of a gut pathobiont drives autoimmunity
in mice and humans. Science. 2018; 359(6380): 1156-61. DOI:
10.1126/science.aar7201.
78. Vallin H., Blomberg S., Alm G.V., Cederblad B., Rönnblom L. Patients
with systemic lupus erythematosus (SLE) have a circulating inducer of
interferon-alpha (IFN-alpha) production acting on leucocytes resembling
immature dendritic cells. Clin. Exp. Immunol. 1999; 115(1): 196-
202. DOI: 10.1046/j.1365-2249.1999.00772.x.
79. Båve U., Alm G.V., Rönnblom L. The combination of apoptotic U937
cells and lupus IgG is a potent IFN-alpha inducer. J. Immunol. 2000;
165(6): 3519-26. DOI: 10.4049/jimmunol.165.6.3519.
80. Lövgren T., Eloranta M.L., Båve U., Alm G.V., Rönnblom L. Induction
of interferon-alpha production in plasmacytoid dendritic cells by
immune complexes containing nucleic acid released by necrotic or late
apoptotic cells and lupus IgG. Arthritis Rheum. 2004; 50(6): 1861-72. DOI: 10.1002/art.20254.
81. Nasonov E.L., Avdeeva A.S., Reshetnyak T.M., Aleksankin A.P.,
Rubtsov Yu.P. The role of NETosis in the pathogenesis of immunoinflammatory
rheumatic diseases. Nauchno-prakticheskaya revmatologiya. 2023;
61(5): 513-30. DOI: 10.47360/1995-4484-2023-513-530. (in Russian)
82. Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C. et al. Neutrophils
activate plasmacytoid dendritic cells by releasing self-DNApeptide
complexes in systemic lupus erythematosus. Sci. Transl. Med. 2011; 3(73): 73ra19. DOI: 10.1126/scitranslmed.3001180.
83. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F. et al. Netting neutrophils are major inducers of type I IFN production in pediatric
systemic lupus erythematosus. Sci. Transl. Med. 2011; 3(73):
73ra20. DOI: 10.1126/scitranslmed.3001201.
84. Hancks D.C., Kazazian H.H. Jr. Roles for retrotransposon insertions in
human disease. Mob. DNA. 2016; 7: 9. DOI: 10.1186/s13100-016-
0065-9.
85. Mavragani C.P., Sagalovskiy I., Guo Q., Nezos A., Kapsogeorgou E.K. et al. Expression of Long Interspersed Nuclear Element 1 Retroelements
and Induction of Type I Interferon in Patients With Systemic Autoimmune
Disease. Arthritis Rheumatol. 2016; 68(11): 2686-96. DOI:
10.1002/art.39795.
86. Okuya K., Tamura Y., Saito K., Kutomi G., Torigoe T., Hirata K., Sato
N. Spatiotemporal regulation of heat shock protein 90-chaperoned
self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via
targeting to static early endosome. J. Immunol. 2010; 184(12): 7092-9. DOI: 10.4049/jimmunol.1000490.
87. Tanaka A., Ito T., Kibata K., Inagaki-Katashiba N., Amuro H. et al. Serum
high-mobility group box 1 is correlated with interferon-α and may
predict disease activity in patients with systemic lupus erythematosus. Lupus. 2019; 28(9): 1120-7. DOI: 10.1177/0961203319862865.
88. Hile G.A., Gudjonsson J.E., Kahlenberg J.M. The influence of interferon
on healthy and diseased skin. Cytokine. 2020; 132: 154605. DOI:
10.1016/j.cyto.2018.11.022.
89. Leffler J., Ciacma K., Gullstrand B., Bengtsson A.A., Martin M., Blom
A.M. A subset of patients with systemic lupus erythematosus fails to
degrade DNA from multiple clinically relevant sources. Arthritis Res.
Ther. 2015; 17(1): 205. DOI: 10.1186/s13075-015-0726-y.
90. Stanifer M.L., Pervolaraki K., Boulant S. Differential regulation of
type I and type III interferon signaling. Int. J. Mol. Sci. 2019; 20(6):
1445. DOI: 10.3390/ijms20061445.
91. Hertzog P., Forster S., Samarajiwa S. Systems biology of interferon
responses. J. Interferon Cytokine Res. 2011; 31(1): 5-11. DOI:
10.1089/jir.2010.0126.
92. Kuri T., Habjan M., Penski N., Weber F. Species-independent bioassay
for sensitive quantification of antiviral type I interferons. Virol. J. 2010;
7: 50. DOI: 10.1186/1743-422X-7-50.
93. Widman D.G. Bioassay for the measurement of type-I interferon activity. Methods
Mol. Biol. 2013; 1031: 91-6. DOI: 10.1007/978-1-
62703-481-4_11.
94. Rees P.A., Lowy R.J. Measuring type I interferon using reporter gene
assays based on readily available cell lines. J. Immunol. Methods.
2018; 461: 63-72. DOI: 10.1016/j.jim.2018.06.007.
95. Pescarmona R., Belot A., Villard M., Besson L., Lopez J. et al. Comparison
of RT-qPCR and Nanostring in the measurement of blood interferon
response for the diagnosis of type I interferonopathies. Cytokine.
2019; 113: 446-452. DOI: 10.1016/j.cyto.2018.10.023.
96. Vasin A.V., Plotnikova M. A., Klotchenko S.A., Lozhkov A.A., Giulikhandanova
N.E. Multiparametric diagnostic test system for quantitative
determination of mRNA level of human RIG-1, IFIT-1, IFIH-1
genes. Patent RF № RU 2782428; 2022. (in Russian)
97. Avdeeva A.S. Type I interferonopathy as one of the mechanisms of
the development systemic autoimmune rheumatic diseases (review of
literature). Klinicheskaya Laboratornaya Diagnostika. 2023; 68 (9):
527-34. DOI: 10.51620/0869-2084-2023-68-9-527-534. (in Russian)
Для цитирования:
Панафидина Т.А., Аристова М.В., Попкова Т.В., Авдеева А.С., Халтурина Е.О. Молекулярные меха-
низмы и методы диагностики гиперпродукции интерферона I типа при системной красной волчанке (обзор литературы). Клиническая лабораторная диагностика. 2025; 70(1): 34-43. .
DOI: https:// doi.org/10.51620/0869-2084-2025-70-1-34-43.
EDN: EHDOGY
For citation:
Panafidina T.A., Aristova M.V., Popkova T.V., Avdeeva A.S., Khalturina E.O. Molecular mechanisms and diagnostic
methods of interferon type I overproduction in systemic lupus erythematosus (review of literature). Klinicheskaya Laboratornaya
Diagnostika (Russian Clinical Laboratory Diagnostics). 2025; 70 (1): 34-43 (in Russ.). .
DOI: https:// doi.org/10.51620/0869-2084-2025-70-1-34-43.
EDN: EHDOGY