Список литературы
ЛИТЕРАТУРА
Симонян Е.В., Осиков М.В., Агеева А.А., Федосов А.А., Бычковских В.А. Современные аспекты патофизиологии термической травмы. Современные проблемы науки и образования. 2020; 3. DOI: https://doi.org/10.17513/spno.29723.
Siu M.C., Voisey J., Zang T., Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen. 2023; 31(4): 439-53. DOI: 10.1111/wrr.13100.
Sheet: Burns. https://www.who.int/en/news-room/fact-sheets/detail/burns.
Козлова М.Н., Земсков В.М., Алексеев А.А., Шишкина Н.С., Барсуков А.А., Демидова В.С. Характер иммунных нарушений и возможности иммунокоррекции при ожоговой болезни. Российский иммунологический журнал. 2019; 22 (4): 1479-81. DOI: 10.31857/S102872210007064-5.
Земсков В.М., Алексеев А.А., Козлова М.Н., Шишкина Н.С., Гнатенко Д.А., Земсков А.М. и др. Иммунная диагностика септических осложнений при ожогах. Успехи современной биологии. 2015; 135(6): 531-41. http://i.uran.ru/webcab/system/files/journalspdf/uspehi-sovremennoy-biologii/uspehi-sovremennoy-biologii-2015-t135-n-6/20156.pdf.
Алексеев А.А. Современные методы лечения ожогов и ожоговой болезни. Комбустиология. 1999; 1. http://combustiolog.ru/journal/sovremenny-e-metody-lecheniya-ozhogov-i-ozhogovoj-bolezni/.
Yoon J., Kym D., Cho Y.S., Hur J., Yoon D. Advanced biomarker clustering analysis reveals mortality predictors in burn patients with sepsis. Scientific Reports. 2024; 14: 22784. DOI: 10.1038/s41598-024-74313-8.
Li A.T., Moussa Y.A., Gus E., Paul E., Yii E., Romero L. et al. Biomarkers for the early diagnosis of sepsis in burns. Annals of Surgery. 2022; 275(4): 652-62. DOI: 10.1097/SLA.0000000000005198.
Foessl I., Haudum C.W., Vidakovic I., Prassl R., Franz J., Mautner S.I. et al. MiRNAs as regulators of the early local response to burn injuries. Int. J. Mol. Sci. 2021; 22: 17: 9209. DOI: 10.3390/ijms22179209.
Ho P.T.B., Clark I.M., Le L.T.T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. 2022; 23: 7167. DOI: 10.3390/ ijms23137167.
Коробкина Е.А., Князева М.С., Киль Ю.В., Титов С.Е., Малек А.В. Сравнительный анализ методов детекции микроРНК с помощью метода обратной транскрипции и количественной полимеразной цепной реакции (ОТ-ПЦР). Клиническая лабораторная диагностика. 2018; 63 (11): 722-8. DOI: 10.18821/0869-2084-2018-63-11-722-728.
Миронова О.Ю., Бердышева М.В., Елфимова Е.М. МикроРНК: взгляд клинициста на состояние проблемы. Часть 1. История вопроса. Евразийский кардиологический журнал. 2023; 1: 100-7. DOI: 10.38109/2225-1685-2023-1-100-107.
Chen B., Li H., Zeng X., Yang P., Liu X., Zhao X. et al. Roles of microRNA on cancer cell metabolism. Journal of Translational Medicine. 2012; 10: 228. DOI: 10.1186/1479-5876-10-228.
Ивкин Д.Ю., Лисицкий Д.С., Захаров Е.А., Любишин М.М., Карпов А.А., Буркова Н.В. и др. МикроРНК как перспективные диагностические и фармакологические агенты. Астраханский медицинский журнал. 2015; 8-25. https://cyberleninka.ru/article/n/mikrornk-kak-perspektivnye-diagnosticheskie-i-farmakologicheskie-agenty.
Dhuri K., Bechtold C., Quijano E., Pham H., Gupta A., Vikram A. et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020; 26(9): 2004. DOI: 10.3390/jcm9062004.
Zemskov V.M., Neymann V., Zemskov A.M., Pronko K.N. Global role of low molecular weight nucleic acids in biological systems. Global Journal of Medical Research. 2020; 20 (2): 5-10.
Земсков А.М., Земсков В.М., Передерий В.Г. Модулирующие функции дрожжевой РНК. Журнал микробиологии, эпидемиологии и иммунобиологии. 1982; 9: 9.
Даниленко М.В., Земсков В.М., Чугунов А.Н., Пасько Н.П., Крамской С.И., Голубченко В.Г. Коррекция нуклеинатом натрия иммунологических расстройств у больных с атеросклеротическими поражениями артерий нижних конечностей. Хирургия. Журнал им. Н.И. Пирогова. 1991; 1(4): 108.
Condrat C.E., Thompson D.C., Barbu M.G., Bugnar O.L., Boboc A., Cretoiu D. et al. MiRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020; 9: 276.
Solvin Å.Ø., Chawla K., Olsen L.C., Hegre S.A., Danielsen K., Jenssen M. et al. MicroRNA profiling of psoriatic skin identifies 11 miRNAs associated with disease severity. Exp. Dermatol. 2022 Apr; 31(4):535-47. DOI: doi: 10.1111/exd.14497.
Srivastava A., Meisgen F., Pasquali L., Munkhammar S., Xia P., Ståhle M. et al. Next-generation sequencing identifies the keratinocyte-specific miRNA signature of psoriasis. J. Investig. Dermatol. 2019; 139: 2547-50.e12.
Lerman G., Avivi C., Mardoukh C., Barzilai A., Tessone A., Gradus B. et al. MiRNA expression in psoriatic skin: Reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS ONE. 2011; 6: e20916.
Suárez-Fariñas M., Ungar B., Correa Da Rosa J., Ewald D.A., Rozenblit M., Gonzalez J. et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J. Allergy Clin. Immunol. 2015; 135: 1218-27.
Polak M.E. Early life regulation of inflammation in atopic dermatitis by microRNA. Br. J. Dermatol. 2021; 184: 391-2.
Liu Y., Yang D., Xiao Z., Zhang M. MiRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast. Surg. 2012; 36: 193-201.
Liang P., Lv C., Jiang B., Long X., Zhang P., Zhang M. et al. MicroRNA profiling in denatured dermis of deep burn patients. Burns. 2012; 38: 534-40.
Singhvi G., Manchanda P., Krishna Rapalli V., Kumar Dubey S., Gupta G., Dua K. MicroRNAs as biological regulators in skin disorders. Biomed. Pharmacother. 2018; 108: 996-1004.
Mori M.A., Ludwig R.G., Garcia-Martin R., Brandão B.B., Kahn C.R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019; 30: 656-73.
Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39: 7223-33.
Miller P.R., Taylor R.M., Tran B.Q., Boyd G., Glaros T., Chavez V.H. et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 2018; 1: 173.
Bodenlenz M., Aigner B., Dragatin C., Liebenberger L., Zahiragic S., Höfferer C. et al. Clinical applicability of dOFM devices for dermal sampling. Ski. Res. Technol. 2013; 19: 474-83.
Terlecki-Zaniewicz L., Pils V., Bobbili M.R., Lämmermann I., Perrotta I., Grillenberger T. et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J. Investig. Dermatol. 2019; 139: 2425-36.e5.
Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M. et al. NCBI GEO: Archive for functional genomics data sets — Update. Nucleic Acids Res. 2013; 41: D991-D995.
Li Z., Wang P., Zhang J., Zhao D. MicroRNA-497-5p downregulation inhibits cell viability, reduces extracellular matrix deposition and induces apoptosis in human hyperplastic scar fibroblasts by regulating Smad7. Exp. Ther. Med. 2021; 21: 1-8.
Finnerty C.C., Jeschke M.G., Branski L.K., Barret J.P., Dziewulski P., Herndon D.N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet. 2016; 388: 1427-36.
Chai L., Kang X.J., Sun Z.Z., Zeng M.F., Yu S.R., Ding Y. et al. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag. Res. 2018; 10: 989-1003.
Huang C., Ma R., Yue J., Li N., Li Z., Qi D. MiR-497 suppresses YAP1 and inhibits tumor growth in non-small cell lung cancer. Cell. Physiol. Biochem. 2015; 37: 342-52.
Yang G., Xiong G., Cao Z., Zheng S., You L., Zhang T. et al. MiR-497 expression, function and clinical application in cancer. Oncotarget. 2016; 7: 55900-11.
Wei W., Zhang W.Y., Bai J.B., Zhang H.X., Zhao Y.Y., Li X.Y. et al. The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes. J. Cell Sci. 2016; 129: 39-50.
Huang X., Wang L.E.I., Liu W.E.I., Li F.E.I. MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol. Lett. 2019; 17: 3425-31.
Jeong Kim Y., Jin Hwang S., Chan Bae Y., Sup Jung J. MiR-21 regulates adipogenic differentiation through the modulation of TGF-signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009; 27: 3093-3102.
Wang T., Feng Y., Sun H., Zhang L., Hao L., Shi C. et al. MiR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 2012; 181: 1911-20.
Wu Y., Song Y., Xiong Y., Wang X., Xu K., Han B. et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell. Physiol. Biochem. 2017; 43: 945-58.
Ourô S., Mourato C., Velho S., Cardador A., Ferreira M.P., Albergaria D. et al. Potential of miR-21 to predict incomplete response to chemoradiotherapy in rectal adenocarcinoma. Front. Oncol. 2020; 10: 1-13. DOI: 10.3389/fonc.2020.577653.
Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M. et al. MiR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J. Cell. Physiol. 2019; 234: 20329-41.
Shi Z.M., Wang L., Shen H., Jiang C.F., Ge X., Li D.M. et al. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017; 36: 2577-88.
Wang Y., Wang C. MicroRNA-211-3p has a role in the effects of lipopolysaccharide on endoplasmic reticulum stress in cultured human skin fibroblasts. Med. Sci. Monit. Basic Res. 2019; 25: 164-8.
Meng Z, Qiu J, Zhang H. MiR-221-3p as a potential biomarker for patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin Pharmacol. Physiol. 2021; 34(5):300-6. DOI: 10.1159/000515114.
Wilmink G.J., Roth C.L., Ibey B.L., Ketchum N., Bernhard J., Cerna C.Z. et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones. 2010; 15: 1027-38.
Wilmink G.J., Roth C.L., Ibey B.L., Ketchum N., Bernhard J., Cerna C.Z. et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones. 2010; 15: 1027-38.
Паншина Д.Д., Кондратова К.А. На эффективность иммунопреципитации комплексов микроРНК и белка Ago2 из плазмы крови человека влияет последовательность процедур. Молекулярная биология. 2020; 54 (2): 244-51.
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011; 13: 423-33.
Théry C. Exosomes: Secreted vesicles and intercellular communications. F1000 Biol. Rep. 2011; 3: 15. DOI: 10.3410/B3-15.
Théry C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002; 2: 569-79.
Weickmann J., Glitz D. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J. Biol. Chem. 1982; 257: 8705-10.
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9: 654-9.
Morello M., Minciacchi V., De Candia P., Yang J., Posadas E., Kim H. et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle. 2013; 12: 3526-36.
Ibberson D., Benes V., Muckenthaler M.U., Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC biotechnology. 2009; 9: 102.
Антонова О.С., Корнева Н.А., Белов Ю.В., Курочкин В.Е. Эффективные методы выделения нуклеиновых кислот для проведения анализов в молекулярной биологии (обзор). Научное приборостроение. 2010; 20(1): 3-9.
Выделение и очистка нуклеиновых кислот: как правильно выбрать метод? https://helicon.ru/media/inf_art/vydelenie-i-ochistka-nukleinovykh-kislot-kak-pravilno-vybrat-metod/.
Судомоина М.А. Методы оценки качества нуклеиновой кислоты, получаемой в процессе выделения. https://sileks.com/assets/files/protocol-for kits/normalization_and_estimation_of_na_quality.pdf.
Солдатов Р.А., Миронов А.А. Статистические методы сравнительного геномного анализа, основанные на использовании диффузионных процессов. Биофизика. 2013; 58: 142-7.
Ласточкина О.В., Горелов П.В. Биологические микрочипы — новый уровень лабораторных исследований. Аналитика. 2017; 36 (5): 76-86. DOI: 10.22184/2227-572X.2017.36.5.76.86.
REFERENCES
Simonyan E.V., Osikov M.V., Ageeva A.A., Fedosov A.A., Bychkovsky V.A. Modern aspects of pathophysiology of thermal injury. Sovremennye problemy nauki i obrazovaniya. 2020; 3. DOI: 10.17513/spno.29723. (in Russian)
Siu M.C., Voisey J., Zang T., Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen. 2023; 31 (4): 439-53. DOI: 10.1111/wrr.13100.
WHO Fact Sheet: Burns. https://www.who.int/en/news-room/fact-sheets/detail/burns.
Kozlova M.N., Zemskov V.M., Alekseev A.A., Shishkinа N.S., Barsukov A.A., Demidovа V.S. Nature of immune disturbances and possibility of immunocorrection in burn disease. Rossiyskiy immunologicheskiy zhurnal. 2019; 22 (4): 1479-81. DOI: 10.31857/S102872210007064-5. (in Russian)
Zemskov V.M., Alekseev A.A., Kozlova M.N., Shishkina N.S., Gnatenko D.A., Zemskov A.M. et al. Immune diagnostics of septic complications in burns. Uspekhi sovremennoy biologii. 2015; 135 (6): 531-41. http://i.uran.ru/webcab/system/files/journalspdf/uspehi-sovremennoy-biologii/uspehi-sovremennoy-biologii-2015-t135-n-6/20156.pdf. (in Russian)
Alekseev A.А. Modern methods in therapy of burn injuries. Kombustiologiya. 1999; 1. http://combustiolog.ru/journal/sovremenny-e-metody-lecheniya-ozhogov-i-ozhogovoj-bolezni/. (in Russian)
Yoon J., Kym D., Cho Y. S., Hur J., Yoon D. Advanced biomarker clustering analysis reveals mortality predictors in burn patients with sepsis. Scientific Reports. 2024; 14: 22784. DOI: 10.1038/s41598-024-74313-8.
Li A.T., Moussa Y.A., Gus E., Paul E., Yii E., Romero L., Padiglione A. et al. Biomarkers for the early diagnosis of sepsis in burns. Annals of Surgery. 2022; 275: 4: 652-62. DOI: 10.1097/SLA.0000000000005198.
Foessl I., Haudum C.W., Vidakovic I., Prassl R., Franz J., Mautner S.I. et al. MirNAs as regulators of the early local response to burn Injuries. Int. J. Mol. Sci. 2021; 22: 17: 9209. DOI: 10.3390/ijms22179209.
Ho P.T.B., Clark I.M., Le L.T.T. MicroRNA-Based Diagnosis and Therapy. Int. J. Mol. Sci. 2022; 23: 7167. DOI: 10.3390/ ijms23137167.
Korobkina E.A., Knyazeva M.S., Kil Yu.V., Titov S.E., Malek A.V. Comparative analysis of RT-qPCR based methodologies for microRNA detection. Klinicheskaya Laboratornaya Diagnostika. 2018; 63 (11): 722-8. DOI: 10.18821/0869-2084-2018-63-11-722-728. (in Russian)
Mironova O.Yu., Berdysheva M.V., Elfimova E.M. MicroRNA: a clinician’s view of the state of the problem. Part 1. History of the issue. Evraziyskiy kardiologicheskiy zhurnal. 2023; (1): 100-7. DOI: 10.38109/2225-1685-2023-1-100-107. (in Russian)
Chen B., Li H., Zeng X., Yang P., Liu X., Zhao X. et al. Roles of microRNA on cancer cell metabolism. Journal of Translational Medicine. 2012; 10: 228. DOI: 10.1186/1479-5876-10-228.
Ivkin D.Yu., Lisitskiy D.S., Zakharov E.A., Lubishin M.M., Karpov A.A., Burkova N.V. et al. MicroRNA as perspective diagnostic and pharmacologic agents. Astrakhanskiy meditsinskiy zhurnal. https://cyberleninka.ru/article/n/mikrornk-kak-perspektivnye-diagnosticheskie-i-farmakologicheskie-agenty. (in Russian)
Dhuri K., Bechtold C., Quijano E., Pham H., Gupta A., Vikram A. et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020; 26: 9: 2004. DOI: 10.3390/jcm9062004.
Zemskov V.M., Neymann V., Zemskov A.M., Pronko K.N. Global role of low molecular weight nucleic acids in biological systems. Global Journal of Medical Research, 2020; 20 (2): 5-10.
Zemskov А.М., Zemskov V.М., Perederiy V.G. Modulating function of yest RNA. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 1982; 9: 9. (in Russian)
Danilenko М.V., Zemskov V.М., Chugunov А.N., Pas`ko N.P., Kramskoy S.I., Golubchenko V.G. Correction of immunological disorders by sodium nucleinate in patient with atherosclerotic lesions of the arteries of the lower extremities. Khirurgiya. Zhurnal imeni N.I. Pirogova. 1991; 1(4): 108. (in Russian)
Condrat C.E., Thompson D.C., Barbu M.G., Bugnar O.L., Boboc A., Cretoiu D. et al. MiRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020; 9: 276.
Solvin Å.Ø., Chawla K., Olsen L.C., Hegre S.A., Danielsen K., Jenssen M. et al. MicroRNA profiling of psoriatic skin identifies 11 miRNAs associated with disease severity. Exp. Dermatol. 2022 Apr; 31(4):535-47. DOI: 10.1111/exd.14497.
Srivastava A., Meisgen F., Pasquali L., Munkhammar S., Xia P., Ståhle M. et al. Next-generation sequencing identifies the keratinocyte-specific miRNA signature of psoriasis. J. Investig. Dermatol. 2019; 139: 2547-50.e12.
Lerman G., Avivi C., Mardoukh C., Barzilai A., Tessone A., Gradus B. et al. MiRNA expression in psoriatic skin: Reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS ONE. 2011; 6: e20916.
Suárez-Fariñas M., Ungar B., Correa Da Rosa J., Ewald D.A., Rozenblit M., Gonzalez J. et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J. Allergy Clin. Immunol. 2015; 135: 1218-27.
Polak M.E. Early life regulation of inflammation in atopic dermatitis by microRNA. Br. J. Dermatol. 2021; 184: 391-2.
Liu Y., Yang D., Xiao Z., Zhang M. MiRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast. Surg. 2012; 36: 193-201.
Liang P., Lv C., Jiang B., Long X., Zhang P., Zhang M. et al. MicroRNA profiling in denatured dermis of deep burn patients. Burns. 2012; 38: 534-40.
Singhvi G., Manchanda P., Krishna Rapalli V., Kumar Dubey S., Gupta G., Dua K. MicroRNAs as biological regulators in skin disorders. Biomed. Pharmacother. 2018; 108: 996-1004.
Mori M.A., Ludwig R.G., Garcia-Martin R., Brandão B.B., Kahn C.R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019; 30: 656-73.
Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39: 7223-33.
Miller P.R., Taylor R.M., Tran B.Q., Boyd G., Glaros T., Chavez V.H. et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 2018; 1: 173.
Bodenlenz M., Aigner B., Dragatin C., Liebenberger L., Zahiragic S., Höfferer C. et al. Clinical applicability of dOFM devices for dermal sampling. Ski. Res. Technol. 2013; 19: 474-83.
Terlecki-Zaniewicz L., Pils V., Bobbili M.R., Lämmermann I., Perrotta, I., Grillenberger T. et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J. Investig. Dermatol. 2019; 139: 2425-36.e5.
Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M. et al. NCBI GEO: Archive for functional genomics data sets — Update. Nucleic Acids Res. 2013; 41: D991-D995.
Li Z., Wang P., Zhang J., Zhao D. MicroRNA-497-5p downregulation inhibits cell viability, reduces extracellular matrix deposition and induces apoptosis in human hyperplastic scar fibroblasts by regulating Smad7. Exp. Ther. Med. 2021; 21: 1-8.
Finnerty C.C., Jeschke M.G., Branski L.K., Barret J.P., Dziewulski P., Herndon D.N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet. 2016; 388: 1427-36.
Chai L., Kang X.J., Sun Z.Z., Zeng M.F., Yu S.R., Ding Y. et al. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag. Res. 2018; 10: 989-1003.
Huang C., Ma R., Yue J., Li N., Li Z., Qi D. MiR-497 suppresses YAP1 and inhibits tumor growth in non-small cell lung cancer. Cell Physiol. Biochem. 2015; 37: 342-52.
Yang G., Xiong G., Cao Z., Zheng S., You L., Zhang T. et al. MiR-497 expression, function and clinical application in cancer. Oncotarget. 2016; 7: 55900-11.
Wei W., Zhang W.Y., Bai J.B., Zhang H.X., Zhao Y.Y. et al. The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes. J. Cell Sci. 2016; 129: 39-50.
Huang X., Wang L.E.I., Liu W.E.I., Li F.E.I. MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol. Lett. 2019; 17: 3425-31.
Jeong Kim Y., Jin Hwang S., Chan Bae Y., Sup Jung J. MiR-21 regulates adipogenic differentiation through the modulation of TGF-signaling in mesenchymal stem cells derived from human adipose tissue. Stem. Cells. 2009; 27: 3093-3102.
Wang T., Feng Y., Sun H., Zhang L., Hao L., Shi C. et al. MiR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 2012; 181: 1911-20.
Wu Y., Song Y., Xiong Y., Wang X., Xu K., Han B. et al. MicroRNA-21 (Mir-21) Promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol. Biochem. 2017; 43: 945-58.
Ourô S., Mourato C., Velho S., Cardador A., Ferreira M.P., Albergaria D. et al. Potential of miR-21 to predict incomplete response to chemoradiotherapy in rectal adenocarcinoma. Front. Oncol. 2020; 10: 1-13. DOI: 10.3389/fonc.2020.577653.
Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M. et al. MiR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J. Cell. Physiol. 2019; 234: 20329-41.
Shi Z.M., Wang L., Shen H., Jiang C.F., Ge X., Li D.M. et al. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017; 36: 2577-88.
Wang Y., Wang C. MicroRNA-211-3p has a role in the effects of lipopolysaccharide on endoplasmic reticulum stress in cultured human skin fibroblasts. Med. Sci. Monit. Basic Res. 2019; 25: 164-8.
Meng Z, Qiu J., Zhang H. MiR-221-3p as a potential biomarker for patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin. Pharmacol. Physiol. 2021; 34(5):300-306. DOI: 10.1159/000515114.
Wilmink G.J., Roth C.L., Ibey B.L., Ketchum N., Bernhard J., Cerna C.Z. et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones. 2010; 15: 1027-38.
Wilmink G.J., Roth C.L., Ibey B.L., Ketchum N., Bernhard J., Cerna C.Z. et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones. 2010; 15: 1027-38.
Panshin D.D., Kondratov K.A. The efficiency of immunoprecipitation of microRNA/Ago2 complexes from human blood plasma is protocol dependent. Molekulyarnaya biologiya. 2020; 54(2): 244-51. (in Russian)
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011; 13: 423-33.
Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep. 2011; 3: 15. DOI: 10.3410/B3-15.
Théry C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002; 2: 569-79.
Weickmann J., Glitz D. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J. Biol. Chem. 1982; 257: 8705-10.
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9: 654-9.
Morello M., Minciacchi V., De Candia P., Yang J., Posadas E., Kim H. et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle. 2013; 12: 3526-36.
Ibberson D., Benes V., Muckenthaler M.U., Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC biotechnology. 2009; 9: 102.
Antonova O.S., Korneva N.A., Belov Yu.V., Kurochkin V.E. Methods of nucleic acids purification and separation in molecular biology (review). Nauchnoe priborostroenie. 2010; 20 (1): 3-9. (in Russian)
Helicon (2022). Available at: https://helicon.ru/media/inf_art/vydelenie-i-ochistka-nukleinovykh-kislot-kak-pravilno-vybrat-metod/ (accessed 26.07.2022).
Sudomoina M.A. Methods of nucleic acids quantification. https://sileks.com/assets/files/protocol-fo kits/normalization_and_estimation_of_na_quality.pdf. (in Russian)
Soldatov R.A., Mironov A.A. Statistical methods of comparative genomic analysis based on diffusion processes. Biofizika. 2013; 58 (2):142-7. (in Russian)
Lastochkina O.V., Gorelov P.V. Biological microchips — a new level of laboratory research. Analytika. 2017; 36(5): 76-86. DOI: 10.22184/2227-572X.2017.36.5.76.86. (in Russian)