Аннотация
Цель исследования – сравнительный анализ геномов клинических изолятов C. striatum и C. pseudodiphtheriticum для характеристики их патогенного потенциала.
Материалы и методы. Клинические штаммы C. striatum и C. pseudodiphtheriticum идентифицированы масс-спектрометрическим методом (MALDI-TоFMS, BioMerieux, Франция), проведено их полногеномное секвенирование и филогенетический анализ.
Результаты. Установлено, что штаммы C. striatum и C. pseudodiphtheriticum содержат широкий набор общих генов, связанных с метаболизмом железа, адгезией, формированием биопленки, выживаемостью в макрофагах и их активацией. Все исследованные клинические изоляты имели в составе генома полифункциональные гены, связанные как с метаболическими процессами, протекающими в бактериальной клетке, так и патогенностью. Все штаммы содержат полифункциональный ген rpf2, кодирующий переход от комменсализма к паразитизму и формирование биопленки.
Заключение. По данным геномного анализа клинические изоляты C. striatum и C. pseudodiphtheriticum обладают патогенным потенциалом, причем клиническим штаммам C. striatum свойственна большая консервативность генома по сравнению с C. pseudodiphtheriticum, характеризующимся значительным разнообразием и более широкой генетической вариабельностью.
Annotation
The aim of the study was to compare the genomes of clinical isolates of C. striatum and C. pseudodiphtheriticum to characterize their pathogenic potential. Clinical strains of C. striatum and C. pseudodiphtheriticum were identified by mass spectrometry (MALDI-ToFMS, BioMerieux, France), their genome-wide sequencing and phylogenetic analysis were performed. It was found that the strains of C. striatum and C. pseudodiphtheriticum contained a fairly wide range of common genes related to iron metabolism, adhesion, biofilm formation, survival in macrophages and their activation. All the studied clinical isolates contained multifunctional genes in the genome related to both metabolic processes occurring in the bacterial cell and pathogenicity. All strains contained the multifunctional rpf2 gene encoding the transition from commensalism to parasitism and biofilm formation. According to genomic analysis, clinical isolates of C. striatum and C. pseudodiphtheriticum have pathogenic potential, and clinical strains of C. striatum are characterized by greater genome conservatism compared to C. pseudodiphtheriticum, characterized by significant diversity and wider genetic variability.
Key words: C. striatum; C. pseudodiphtheriticum; genes; pathogenicity; whole-genome sequencing
Список литературы
Литература (пп. 1-9, 11-17, 19-31 см. REFERENCES)
10. Харсеева Г. Г., Мангутов Э.О., Миронов А.Ю. Коринебактериозы: этиология, микробиологическая диагностика. Клиническая лабораторная диагностика. 2025; 70 (1): 59-67.
18. Мангутов Э. О., Харсеева Г. Г., Подойницына О. А., и др. Соrynebacterium sрр.: отличия фено- и генотипических маркеров патогенности изолятов от больных с воспалительными заболеваниями респираторного тракта и практически здоровых лиц. Клиническая лабораторная диагностика. 2023; 68 (10): 604-11.
REFERENCES
Charalampous T., Alcolea-Medina A., Snell L.B., Williams T.G.S., Batra R., Alder C., Telatin A., Camporota L., Meadows C.I.S., Wyncoll D., et al. Evaluating the Potential for Respiratory Metagenomics to Improve Treatment of Secondary Infection and Detection of Nosocomial Transmission on Expanded COVID-19 Intensive Care Units. Genome Med. 2021;13:182. doi: 10.1186/s13073-021-00991-y.
McMullen A.R., Anderson N., Wallace M.A., Shupe A., Burnham C.-A.D. When Good Bugs Go Bad: Epidemiology and Antimicrobial Resistance Profiles of Corynebacterium striatum, an Emerging Multidrug-Resistant, Opportunistic Pathogen. Antimicrob. Agents Chemother. 2017;61:e01111-17. doi: 10.1128/AAC.01111-17.
Shariff M., Aditi A., Beri K. Corynebacterium striatum: An Emerging Respiratory Pathogen. J. Infect. Dev. Ctries. 2018;12:581-86. doi: 10.3855/jidc.10406.
Orosz L., Lengyel G., Makai K., Burián K. Prescription of Rifampicin for Staphylococcus Aureus Infections Increased the Incidence of Corynebacterium Striatum with Decreased Susceptibility to Rifampicin in a Hungarian Clinical Center. Pathogens. 2023;12:481. doi: 10.3390/pathogens12030481.
Silva-Santana G., Silva C.M.F., Olivella J.G.B., Silva I.F., Fernandes L.M.O., Sued-Karam B.R., Santos C.S., Souza C., Mattos-Guaraldi A.L. Worldwide Survey of Corynebacterium Striatum Increasingly Associated with Human Invasive Infections, Nosocomial Outbreak, and Antimicrobial Multidrug-Resistance, 1976–2020. Arch. Microbiol. 2021;203:1863-80. doi: 10.1007/s00203-021-02246-1.
Söderquist B., Henningsson T., Stegger M. Corynebacterium striatum Prosthetic Joint Infection Successfully Treated with Long-Term Dalbavancin. Microorganisms. 2023;11(3):550. doi: 10.3390/microorganisms11030550.
Marino A., Campanella E., Stracquadanio S., Ceccarelli M., Zagami A., Nunnari G. et al. Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations. Infect Dis Rep. 2022;14(3):383-90. doi: 10.3390/idr14030042.
Fernández Guerrero M.L., Molins A., Rey M., Romero J., Gadea I. Multidrug-Resistant Corynebacterium striatum Endocarditis Successfully Treated with Daptomycin. Int. J. Antimicrob. Agents. 2012;40: 373–74. doi: 10.1016/j.ijantimicag.2012.06.001.
Oliva A., Belvisi V., Iannetta M., Andreoni C., Mascellino M.T., Lichtner M., Vullo V., Mastroianni C.M. Pacemaker Lead Endocarditis Due to Multidrug-Resistant Corynebacterium striatum Detected with Sonication of the Device. J. Clin. Microbiol. 2010;48:4669-71. doi: 10.1128/JCM.01532-10.
Kharseeva G.G., Mangutov E.O., Mironov A. Yu. Corynebacteriosis: etiology, microbiological diagnostics (lecture). Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2025; 70 (1): 59-67. (in Russ.).
doi: https://doi.org/10.51620/0869-2084-2025-70-1-59-67.
Orosz L., Sóki J., Kókai D., Burián К. Corynebacterium striatum-Got Worse by a Pandemic? J.Pathogens. 2022;11(6):685. doi: 10.3390/pathogens11060685.
Kang Y., Chen S., Zheng B., Du X., Li Z., Tan Z., Zhou H., Huang J., Tian L., Zhong J., et al. Epidemiological Investigation of Hospital Transmission of Corynebacterium Striatum Infection by Core Genome Multilocus Sequence Typing Approach. Microbiol. Spectr. 2023;11:e0149022. doi: 10.1128/spectrum.01490-22.
Qiu J., Shi Y., Zhao F., Xu Y., Xu H., Dai Y., Cao Y. The Pan-Genomic Analysis of Corynebacterium Striatum Revealed Its Genetic Characteristics as an Emerging Multidrug-Resistant Pathogen. Evol. Bioinform. 2023; 19: 11769343231191481. doi: 10.1177/11769343231191481.
De Souza C., Faria Y.V., de Oliveira Sant’Anna L., Viana V.G., Seabra S.H., de Souza M.C. et al. Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreak. Mem. Inst. Oswaldo Cruz. 2015; 110: 242-48. doi: 10.1590/0074-02760140373.
Ramos J.N., Souza C., Faria Y.V., da Silva E.C., Veras J.F.C., Baio P.V.P. et al. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect Dis. 2019;19(1):672. doi: 10.1186/s12879-019-4294-7
Ozdemir S., Aydogan O., Koksal Cakirlar F. Biofilm formation and antimicrobial susceptibility of non-diphtheriae corynebacterium strains isolated from blood cultures: First report from Turkey. Medeni. Med. J. 2021; 36: 123-29. doi: 10.5222/MMJ.2021.60252.
Jesus H. N. R., Ramos J. N., Rocha D., Alves D. A., Silva C. S., Cruz J. V.O., et al. (2022). The pan-genome of the emerging multidrug-resistant pathogen Corynebacterium striatum. Funct. Integr. Genomics 2023, 5. doi: 10.21203/rs.3.rs-1666801/v1
Mangutov E.O., Kharseeva G.G., Podoynitsyna О.А., et al. Сorynebacterium spp: differences in pheno- and genotypic markers of pathogenicity of isolates from patients with inflammatory diseases of the respiratory tract and practically healthy individuals. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2023; 68 (10): 604-11 (in Russ). doi org/10 51620/0869-2084-2023-68-10-604-611.
Weil L.M., Williams M.M., Shirin T., et al. Investigation of a Large Diphtheria Outbreak and Cocirculation of Corynebacterium pseudodiphtheriticum Among Forcibly Displaced Myanmar Nationals, 2017-2019. J. Infect. Dis. 2021; 224(2): 318-25. doi:10.1093/infdis/jiaa729.
Gompelmann D., Kappes J., Heussel C.P., Schnabel P.A., Herth F.J. Corynebacterium pseudodiphtheriticum als Erreger einer schwerwiegenden Pneumonie bei sekundärem Immunglobulinmangel [Corynebacterium pseudodiphtheriticum causing severe pneumonia in secondary immunoglobulin deficiency]. Dtsch Med Wochenschr. 2011;136(48):2503-06. doi:10.1055/s-0031-1297277.
Souza M.C., dos Santos L.S., Sousa L.P., et al. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains. Antonie Van Leeuwenhoek. 2015;107(6):1387-99. doi:10.1007/s10482-015-0433-3.
Moyano R.O., Tonetti F.R., Fukuyama K., et al. The Respiratory Commensal Bacterium Corynebacterium pseudodiphtheriticum as a Mucosal Adjuvant for Nasal Vaccines. Vaccines. 2023;11:611
Ortiz Moyano R., Raya Tonetti F., Tomokiyo M., Kanmani P., Vizoso-Pinto M.G., Kim H., Quilodrán-Vega S., Melnikov V., Alvarez S., Takahashi H., Kurata S., Kitazawa H., Villena J. The Ability of Respiratory Commensal Bacteria to Beneficially Modulate the Lung Innate Immune Response Is a Strain Dependent Characteristic. Microorganisms. 2020;8(5):727. doi: 10.3390/microorganisms8050727.
Bankevich A., Nurk S., Antipov D., et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455-77. doi: 10.1089/cmb.2012.0021
Prjibelski A., Antipov D., Meleshko D., et al. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020;70(1):e102. doi: 10.1002/cpbi.102.
Gurevich A., Saveliev V., Vyahhi N., et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072-5. doi: 10.1093/bioinformatics/btt086.
Page A.J., Cummins C.A., Hunt M., et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3. doi: 10.1093/bioinformatics/btv421.
Database оf virulence factоrs (VFDB). Available at:httр: //www.mgc.ac.cn/VFs/. Accessed: 21.08.2025.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068-9. doi: 10.1093/bioinformatics/btu153
Kumar S., Stecher G., Li M., et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 201835(6):1547-1549. doi: 10.1093/molbev/msy096
Tamura K., Peterson D., Peterson N., et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9. doi: 10.1093/molbev/msr121.