Аннотация
Одним из фундаментальных механизмов старения организма является клеточное старение (cellular senescence). Оно неразрывно связано со всеми возраст-зависимыми физиологическими и патологическими процессами. Продолжающиеся исследования в этой области требуют четкого понимания признаков процесса старения клетки и поиска адекватных его биомаркеров. В настоящее время к молекулярным маркерам клеточного старения относят лизосомальный фермент β-галактозидазу, связанную со старением (SAβgal); белки-регуляторы клеточного цикла и апоптоза (р16, р21, р53, bcl2); ассоциированный со старением секреторный фенотип (senescence‐associated secretory phenotype – SASP). Он включает в себя сложный набор из не менее, чем 80 провоспалительных цитокинов, факторов роста, простагландинов, протеаз и т. д. Среди них особого интереса заслуживает фактор роста/дифференцировки 15 (Growth Differentiation Factor-15, GDF15), относящийся к суперсемейству трансформирующих факторов роста бета. В физиологических условиях GDF15 вырабатывается в различных органах и выполняет разнообразные функции (метаболическая, иммунорегуляторная, участие в морфогенезе, поддержании беременности, регуляция аппетита и др.).
Цель обзора — оценить значение GDF15 как потенциального биомаркера клеточного старения.
Материалы и методы. Проведен анализ 26 полнотекстовых публикаций (метаанализы, оригинальные исследования, описательные обзоры) за 2020 – 2025 гг., отобранных с использованием ключевых слов «клеточное старение», «биомаркеры», «СDF15» в базе данных поисковой системы Pubmed.
Заключение. На основании этого делается заключение о том, что возрастная динамика сывороточного уровня данного фактора роста и доказанная его взаимосвязь с развитием возраст-ассоциированных заболеваний позволяют признать GDF15 одним из важных компонентов SASP и потенциальным биомаркером клеточного старения.
Annotation
One of the fundamental mechanisms of body aging is cellular senescence. It is inextricably linked with all age-related processes, both physiological and pathological. Ongoing research in this area requires a clear understanding of the signs of the cell aging process, as well as the search for adequate biomarkers. Currently, molecular markers of cellular senescence include the lysosomal enzyme β-galactosidase associated with aging (SAβgal); proteins that regulate the cell cycle and apoptosis (p16, p21, p53, bcl2); and the senescence-associated secretory phenotype (SASP). It includes a complex set of at least 80 pro-inflammatory cytokines, growth factors, prostaglandins, proteases, etc. Among them, Growth Differentiation Factor-15 (GDF15) is of particular interest. It belongs to the superfamily of transforming growth factors beta. Under physiological conditions, GDF15 is produced in various organs and performs a variety of functions (metabolic, immunoregulatory, participation in morphogenesis, maintenance of pregnancy, regulation of appetite, etc.).
The purpose of this narrative review is to assess the significance of GDF-15 as a potential biomarker of cellular senescence. An analysis of 26 full-text publications (meta-analyses, original research, and descriptive reviews) from 2020 to 2025, selected using the keywords «cellular senescence» and «biomarkers» in the Pubmed search engine database, was conducted. Based on this analysis, it was concluded that the age-related dynamics of serum CDF15 levels and their proven association with the development of age-related diseases allow us to recognize GDF15 as an important component of SASP and a potential biomarker of cellular senescence.
Key words: cellular senescence; biomarkers; GDF15; review
Список литературы
ЛИТЕРАТУРА (пп. 1-8, 10-12, 14-55 см. references)
9. Масютина А.М., Пащенков М.В., Пинегин Б.В. Клеточное старение: механизмы и клиническое значение. Иммунология. 2024; 45 (2): 221-234. DOI: 10.33029/1816-2134-2024-45-2-221-234.
13. Базарный В.В., Копенкин М.А., Полушина Л.Г., Семенцова Е.А., Мандра Ю.В. Диагностическая эффективность определения некоторых белков митохондриального пути апоптоза в ротовой жидкости при возраст-ассоциированных заболеваниях полости рта. Клиническая лабораторная диагностика. 2023; 68; 9: 518-526. DOI: 10.51620/0869-2084-2023-68-9-518-526.
references
1. Lu Y.R., Tian X., Sinclair D.A. The information theory of aging. Nat Aging. 2023;3(12):1486-1499. DOI: 10.1038/s43587-023-00527-6.
2. Quintero F.A, Garraza M., Navazo B., Cesani M.F. Theories of biological aging: An integrative review. Rev Esp Geriatr Gerontol. 2024;59(6):101530.DOI: 10.1016/j.regg.2024.101530.
3. Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 1973; 41 (1): 181-90. DOI:10.1016/0022-5193(73)90198-7.
4. Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018; 19(6): 371-384. DOI: 10.1038/s41576-018-0004-3.
5. Farr J.N., Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res. 2018; 33(9):1568-1584. DOI: 10.1002/jbmr.3564.
6. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217. DOI: 10.1016/j.cell.2013.05.039.
7. Wagner K.H., Cameron-Smith D., Wessner B., Franzke B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients. 2016;8(6):338. DOI: 10.3390/nu8060338.
8. Hayflick L., Moorhead P.S.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961; 25 (3): 585-621. DOI: 10.1016/0014-4827(61)90192-6
9. Masyutina A.M., Pashchenkov M.V., Pinegin B.V. Cellular aging: mechanisms and clinical significance. Immunologiya. 2024; 45 (2): 221-234. DOI: 10.33029/1816-2134-2024-45-2-221-234. (in Russian)
10. Kell L., Simon A.K., Alsaleh G., Cox L.S. The central role of DNA damage in immunosenescence. Front. Aging. 2023; 4: 1-21. DOI: 10.3389/fragi.2023.1202152.
11. Liu R.M. Aging, cellular senescence, and Alzheimer’s disease. Int J Mol Sci. 2022;23:1989. DOI: 10.3390/ijms23041989.
12. Campisi J. The biology of replicative senescence. Eur J Cancer. 1997;33:703–9.
13. Bazarnyi V.V., Kopenkin M.A., Polushina L.G., Sementsova E.A., Mandra Yu.V. Diagnostic efficiency of determination of some proteins of the mitochondrial apoptotic pathway in oral fluid in age-associated diseases of the oral cavity. Klinicheskaya laboratornaya diagnostika. 2023. Т. 68. № 9. С. 518-526. DOI: 10.51620/0869-2084-2023-68-9-518-526. (in Russian)
14. Zhou D., Borsa M., Simon A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell. 2021 ;20(2):e13316. DOI: 10.1111/acel.13316.
15. Mohamad Kamal N.S., Safuan S., Shamsuddin S., Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol. 2020; 99(6):151108. DOI: 10.1016/j.ejcb.2020.151108.
16. Park J.T., Lee Y.S., Cho K.A., Park S.C. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev. 2018;47:176-182. DOI: 10.1016/j.arr.2018.08.003.
17. Spazzafumo L., Mensà E., Matacchione G., Galeazzi T., Zampini L., Recchioni R. et al. Age-related modulation of plasmatic beta-Galactosidase activity in healthy subjects and in patients affected by T2DM. Oncotarget. 2017;8(55):93338-93348. DOI: 10.18632/oncotarget.21848.
18. Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20(4):e13338. DOI: 10.1111/acel.13338.
19. Lee R., Margaritis M., Channon K.M., Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012; 19(16): 2504-2520. DOI: 10.2174/092986712800493057.
20. Yan J., Chen S., Yi Z., Zhao R., Zhu J., Ding S. et al. The role of p21 in cellular senescence and aging-related diseases. Mol Cells. 2024;47(11):100113.DOI: 10.1016/j.mocell.2024.100113.
21. Huang W., Hickson L.J., Eirin A., Kirkland J.L., Lerman L.O. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18(10):611-627. DOI:10.1038/s41581-022-00601-z.
22. Liu Y., Tavana O., Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol. 2019; 11(7):564-577. DOI: 10.1093/jmcb/mjz060.
23. Mohamad Kamal N.S., Safuan S., Shamsuddin S., Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol. 2020; 99(6):151108. DOI: 10.1016/j.ejcb.2020.151108.
24. Кarin O., Agrawal A., Porat Z., Krizhanovsky V., Alon U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat Commun. 2019;10(1):5495. DOI: 10.1038/s41467-019-13192-4.
25. Basisty N., Kale A., Jeon O.H., Kuehnemann C., Payne T., Rao C. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020; 18 (1): e3000599. DOI: 10.1371/journal.pbio.3000599.
26. Shimizu K., Inuzuka H., Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol. 2025;108:1-16. DOI: 10.1016/j.semcancer.2024.11.001.
27. Wang B., Han J., Elisseeff J.H., Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 2024 ; 25(12):958-978. DOI: 10.1038/s41580-024-00727-x.
28. Tylutka A., Walas Ł., Zembron-Lacny A. Level of IL-6, TNF, and IL-1β and age-related diseases: a systematic review and meta-analysis. Front Immunol. 2024;15:1330386. DOI: 10.3389/fimmu.2024.1330386.
29. Bao H., Cao J., Chen M., Chen M., Chen W., Chen X, et al. Biomarkers of aging. Sci China Life Sci.2023;66(5):893-1066. DOI:10.1007/s11427-023-2305-0.
30. Bootcov M.R., Bauskin A.R., Valenzuela S.M., Moore A.G.,Bansal M., He X.Y. et al., MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA. 1997;94(21):11514-9. DOI: 10.1073/pnas.94.21.11514.
31. Tang Y., Liu T., Sun S., Peng Y., Huang X., Wang S. et al. Role and Mechanism of Growth Differentiation Factor 15 in Chronic Kidney Disease. J Inflamm Res. 2024;17:2861-2871. DOI: doi: 10.2147/JIR.S451398.
32. Siddiqui J.A., Pothuraju R., Khan P., Sharma G., Muniyan S., Seshacharyulu P. et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev. 2022; 64:71-83. DOI: 10.1016/j.cytogfr.2021.11.002.
33. Iglesias P., Silvestre R.A., Díez J.J. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine. 2023;81(3):419-431. DOI:10.1007/s12020-023-03377-9.
34. Assadi A, Zahabi A, Hart RA. GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch. 2020;472(11):1535-1546. DOI: 10.1007/s00424-020-02459.
35. Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology. 2024;26(1):19. DOI: 10.1007/s10522-024-10164-0.
36. Breit S.N., Brown D.A., Tsai V.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu Rev Physiol. 2021;83:127-151. DOI:10.1146/annurev-physiol-022020-045449.
37. Yang S.H., Yang L., Shi Y., Xu H.R., Gan J., Shi J.X. et al. GDF15 promotes trophoblast invasion and pregnancy success via the BMPR1A/BMPR2/p-SMAD1 pathway: Implications for recurrent miscarriage. Life Sci. 2025;371:123586. DOI: 10.1016/j.lfs.2025.123586.
38. Oppong R., Orru V., Marongiu M., Qian Y., Sidore C., Delitala A. et al. Age-Associated Increase in Growth Differentiation Factor 15 Levels Correlates With Central Arterial Stiffness and Predicts All-Cause Mortality in a Sardinian Population Cohort. J Am Heart Assoc. 2025 ; 14(10):e036253. DOI: 10.1161/JAHA.124.036253.
39. Lassus J., Tarvasmäki T., Tolppanen H. Biomarkers in cardiogenic shock. Adv Clin Chem. 2022;109:31-73. DOI: 10.1016/bs.acc.2022.03.002.
40. Lorenz E.C., Smith B.H., Wadei H.M., Mour G., Kennedy C.C., Schinstock C.A. et al. Senescence Biomarkers and Trajectories of Frailty and Physical Function After Kidney Transplantation. Clin Transplant. 2024;38(11):e70022. DOI: 10.1111/ctr.70022.
41. Xue X.H., Tao L.L., Su D.Q., Guo C.J., Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis. Brain Behav. 2022 ; 12(2):e2502. DOI: 10.1002/brb3.2502.
42. Tavenier J., Rasmussen L. J. H., Andersen A. L., Houlind M. B., Langkilde A., Andersen O. et al. Association of GDF15 with Inflammation and Physical Function during Aging and Recovery after Acute Hospitalization: A Longitudinal Study of Older Patients and Age-Matched Controls. J. Gerontol. A. Biol. Sci. Med. Sci. 2021; 76, 964–974. DOI: 10.1093/GERONA/GLAB011
43. Narayan V., Thompson E.W., Demissei B., Ho J.E., Januzzi J.L., Ky B. Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(21):2726-2737. DOI: 10.1016/j.jacc.2020.03.067.
44. Qian X., He S., Shen X., Shi N., Gong Q., An Y.et al. Circulating levels of GDF-15 for predicting cardiovascular and cancer morbidity and mortality in type 2 diabetes: Findings from Da Qing IGT and Diabetes Study. Diabetes Metab. 2022;48(6):101380.DOI: 10.1016/j.diabet.2022.101380/
45. Bao X., Borné Y., Xu B., Orho-Melander M., Nilsson J., Melander O. et al. Growth differentiation factor-15 is a biomarker for all-cause mortality but less evident for cardiovascular outcomes: A prospective study. Am Heart J. 2021;234:81-89. DOI: 10.1016/j.ahj.2020.12.020.
46. Pan T., Duan R., Xu Z., He X., Luo X., Zhou G. et al. GDF-15 as a biomarker for diagnosis and prognosis of lung cancer: a meta-analysis. Front Oncol. 2025;15:1447990. DOI: 10.3389/ fonc.2025. 1447990.
47. Zhang X., Zhou C.G., Ma L.J. Role of GDF-15 in diabetic nephropathy: mechanisms, diagnosis, and therapeutic potential. Int Urol Nephrol. 2025;57(1):169-175. DOI: 10.1007/s11255-024-04179-2.
48. di Candia A.M., de Avila D.X., Moreira G.R., Villacorta H., Maisel A.S. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am Heart J Plus. 2021;9:100046. DOI: 10.1016/j.ahjo.2021.100046.
49. St Sauver J.L., Weston S.A., Atkinson E.J., Mc Gree M.E., Mielke M.M., White T.A.еt al. Biomarkers of cellular senescence and risk of death in humans. Aging Cell. 2023 ; 22(12):e14006. DOI: 10.1111/acel.14006.
50. Yu J., Liu Y., Zhang H., Ping F., Li W., Xu L. et al. Serum Growth Differentiation Factor 15 is Negatively Associated with Leukocyte Telomere Length. J Nutr Health Aging. 2025 ; 29(4):100493. DOI: 10.1016/j.jnha.2025.100493.
51. Hartmann A., Hartmann C., Secci R., Hermann A., Fuellen G., Walter M. Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Front Genet. 2021;12:686320. DOI: 10.3389/fgene.2021.686320.
52. Sigvardsen C.M., Richter M.M., Engelbeen S., Kleinert M., Richter E.A. GDF15 is still a mystery hormone. Trends Endocrinol Metab. 2025;36(6):591-601.DOI: 10.1016/j.tem.2024.09.002.
53. Torrens-Mas M., Navas-Enamorado C., Galmes-Panades A., Masmiquel L., Sanchez-Polo A., Capo X. et al.GDF-15 as a proxy for epigenetic aging: associations with biological age markers, and physical function. Biogerontology. 2024;26(1):22. DOI:10.1007/s10522-024-10165-z.
54. Cummings S.R., Lui L.Y., Zaira A., Mau T., Fielding R.A., Atkinson E.J. et al. Biomarkers of cellular senescence and major health outcomes in older adults. Geroscience. 2025;47(3):3407-3415. DOI: 10.1007/s11357-024-01474-9.
55. Lee J, Giannaris PS, Yilmaz CE, Yilmaz G. Emerging biomarkers in ischemic stroke. Vessel Plus. 2025;9:11. DOI: 10.20517/2574-1209.2025.58.