Список литературы
ЛИТЕРАТУРа (пп. 1-2, 4, 8-48 см. REFERENCES)
3. Бойцов С.А., Проваторов С.И., Шестова И.И., Никулина Н.Н. Неотложные меры в диагностике и лечении хронических форм ишемической болезни сердца. Терапевтический архив. 2025; 97(1): 5–10. doi: 10.26442/00403660.2025.01.203125.
5. Алиева А.М., Байкова И.Е., Резник Е.В., Пинчук Т.В., Шнахова Л.М., Валиев Р.К. и др. Сердечный белок, связывающий жирные кислоты, – перспективный биологический маркер при сердечной недостаточности. РМЖ. Медицинское обозрение. 2022; 6(1): 5-11. doi: 10.32364/2587-6821-2022-6-1-5-11.
6. Алиева А.М., Резник Е.В., Теплова Н.В., Меликулов А.А., Ахмедова М.Ф., Котикова И.А. и др. МикроРНК-34а при сердечно-сосудистых заболеваниях: взгляд в будущее. Кардиологический вестник. 2023; 18(1): 14‑22. doi: 10.17116/Cardiobulletin20231801114.
7. Соловьева Н.И., Гуреева Т.А., Тимошенко О.С., Москвитина Т.А., Кугаевская Е.В. Фурин как пропротеинконвертаза и его роль в нормальных и патологических биологических процессах. Биомедицинская химия. 2016; 62(6): 609-621. doi: 10.18097/PBMC20166206609.
REFERENCES
Deng P., Fu Y., Chen M., Wang D., Si L. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023; 22(1): 164. doi: 10.1186/s12939-023-01988-2.
Silva S., Fatumo S., Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024; 13(1): 29. doi: 10.1186/s13643-023-02442-8.
Boytsov S.A., Provatorov S.I., Shestova I.I., Nikulina N.N. Emergency measures in the diagnosis and treatment of chronic forms of ischemic heart disease. Terapevticheskiy Arkhiv. 2025; 97(1): 5–10. (in Russian) doi: 10.26442/00403660.2025.01.203125.
Wehbe Z., Wehbe M., Al Khatib A., Dakroub A.H., Pintus G., Kobeissy F. et al. Emerging understandings of the role of exosomes in atherosclerosis. J Cell Physiol. 2025; 240(1): e31454. doi: 10.1002/jcp.31454.
Alieva A.M., Baykova I.E., Reznik E.V., Pinchuk T.V., Shnakhova L.M., Valiev R.K. et al. Heart-type fatty acid binding protein: the promising biological marker in heart failure. RMZh. Meditsinskoe Obozrenie. 2022; 6(1): 5-11. (in Russian) doi: 10.32364/2587-6821-2022-6-1-5-11.
Alieva A.M., Reznik E.V., Teplova N.V., Melikulov A.A., Akhmedova M.F., Kotikova I.A. et al. MicroRNA-34a in cardiovascular disease: a glimpse into the future. Russian Cardiology Bulletin. [Kardiologicheskiy Vestnik]. 2023;18(1): 14‑22. (in Russian) doi: 10.17116/Cardiobulletin20231801114.
Solovyeva N.I., Gureeva T.A., Timoshenko O.S., Moskvitina T.A., Kugaevskaya E.V. Furin as proprotein convertase and its role in normal and pathological biological processes. Biomeditsinskaya Khimiya. 2016; 62(6): 609-621. (in Russian) doi: 10.18097/PBMC20166206609.
Zhang Y., Gao X., Bai X., Yao S., Chang Y.Z., Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener. 2022; 11(1): 39. doi: 10.1186/s40035-022-00313-1.
Marafie S.K., Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells. 2023; 12(19): 2407. doi: 10.3390/cells12192407.
Ivachtchenko A.V., Khvat A.V., Shkil D.O. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci. 2024; 25(17): 9199. doi: 10.3390/ijms25179199.
Fry H., Mazidi M., Kartsonaki C., Clarke R., Walters R.G., Chen Z. et al. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci. 2024; 25(17): 9237. doi: 10.3390/ijms25179237.
Al-Kuraishy H.M., Al-Maiahy T.J., Al-Gareeb A.I., Alexiou A., Papadakis M., Saad H.M. et al. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken). 2024;7(1): e1920. doi: 10.1002/cnr2.1920.
Wichaiyo S., Koonyosying P., Morales N.P. Functional Roles of Furin in Cardio-Cerebrovascular Diseases. ACS Pharmacol Transl Sci. 2024; 7(3): 570-585. doi: 10.1021/acsptsci.3c00325.
Thomas G., Couture F., Kwiatkowska A. The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. Int J Mol Sci. 2022; 23(7): 3435. doi: 10.3390/ijms23073435.
Holoubek J., Salat J., Matkovic M., Bednar P., Novotny P., Hradilek M. et al. Irreversible furin cleavage site exposure renders immature tick-borne flaviviruses fully infectious. Nat Commun. 2025; 16(1): 7491. doi: 10.1038/s41467-025-62750-6.
Morgan A.L., Vu M.N., Zhou Y., Lokugamage K.G., Meyers W.M., Alvarado R.E. et al. The furin cleavage site is required for pathogenesis, but not transmission, of SARS-CoV-2. J Virol. 2025; 99(7): e0046725. doi: 10.1128/jvi.00467-25.
You J., Yu Q., Chen R., Li J., Zhao T., Lu Z. A prognostic model for lung adenocarcinoma based on cuproptosis and disulfidptosis related genes revealing the key prognostic role of FURIN. Sci Rep. 2025; 15(1): 6057. doi: 10.1038/s41598-025-90653-5.
Roebroek A.J., Umans L., Pauli I.G., Robertson E.J., van Leuven F., Van de Ven W.J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development. 1998; 125: 4863–4876. doi: 10.1242/dev.125.24.4863.
Tran H.H., Thu A., Twayana A.R., Fuertes A., Gonzalez M., James M. et al. Targeting Corin and Furin in Hypertension and Heart Failure: A New Therapeutic Frontier in Cardiovascular Therapeutics. Cardiol Rev. 2025. doi: 10.1097/CRD.0000000000000999.
Mazidi M., Wright N., Yao P., Kartsonaki C., Millwood I.Y., Fry H. et al. Plasma Proteomics to Identify Drug Targets for Ischemic Heart Disease. J Am Coll Cardiol. 2023; 82(20): 1906-1920. doi: 10.1016/j.jacc.2023.09.804.
Xu D., Lu J., Yang Y., Hu W., Chen J., Xue J. et al. Identifying novel drug targets for calcific aortic valve disease through Mendelian randomization. Atherosclerosis. 2025; 402: 119110. doi: 10.1016/j.atherosclerosis.2025.119110.
Yang X., Yang W., McVey D.G., Zhao G., Hu J., Poston R.N. et al. FURIN Expression in Vascular Endothelial Cells Is Modulated by a Coronary Artery Disease-Associated Genetic Variant and Influences Monocyte Transendothelial Migration. J Am Heart Assoc. 2020; 9(4): e014333. doi: 10.1161/JAHA.119.014333.
Osman E.E.A., Rehemtulla A., Neamati N. Why All the Fury over Furin? J. Med. Chem. 2022; 65: 2747–2784. doi: 10.1021/acs.jmedchem.1c00518.
Kim W., Essalmani R., Szumska D., Creemers J.W., Roebroek A.J., D’Orleans-Juste P. et al. Loss of endothelial furin leads to cardiac malformation and early postnatal death. Mol Cell Biol. 2012; 32(17): 3382-91. doi: 10.1128/MCB.06331-11.
Dupays L., Towers N., Wood S., David A., Stuckey D.J., Mohun T. Furin, a transcriptional target of NKX2-5, has an essential role in heart development and function. PLoS One. 2019;14(3): e0212992. doi: 10.1371/journal.pone.0212992.
Fernandez C., Rysa J., Almgren P., Nilsson J., Engstrom G., Orho-Melander M. et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284(4):377-387. doi: 10.1111/joim.12783.
Wang Y.K., Tang J.N., Han L., Liu X.D., Shen Y.L., Zhang C.Y. et al. Elevated FURIN levels in predicting mortality and cardiovascular events in patients with acute myocardial infarction. Metabolism. 2020; 111: 154323. doi: 10.1016/j.metabol.2020.154323.
Lei X., Basu D., Li Z., Zhang M., Rudic R.D., Jiang X.C. et al. Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury. Atherosclerosis. 2014; 236(1): 121-30. doi: 10.1016/j.atherosclerosis.2014.06.015.
Yu Y., Lei X., Jiang H., Li Z., Creemers J.W.M., Zhang M. et al. Prodomain of Furin Promotes Phospholipid Transfer Protein Proteasomal Degradation in Hepatocytes. J Am Heart Assoc. 2018; 7 doi: 10.1161/JAHA.118.008526.
Yakala G.K., Cabrera-Fuentes H.A., Crespo-Avilan G.E., Rattanasopa C., Burlacu A., George B.L. et al. FURIN Inhibition Reduces Vascular Remodeling and Atherosclerotic Lesion Progression in Mice. Arterioscler Thromb Vasc Biol. 2019;39(3):387-401. doi: 10.1161/ATVBAHA.118.311903.
Turpeinen H., Raitoharju E., Oksanen A., Oksala N., Levula M., Lyytikäinen L.P. et al. Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL. Atherosclerosis. 2011; 219(2): 799-806. doi: 10.1016/j.atherosclerosis.2011.08.011.
Liu Z.W., Ma Q., Liu J., Li J.W., Chen Y.D. The association between plasma furin and cardiovascular events after acute myocardial infarction. BMC Cardiovasc Disord. 2021; 21(1): 468. doi: 10.1186/s12872-021-02029-y.
Nikpay M., Goel A., Won H.H., Hall L.M., Willenborg C., Kanoni S. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015; 47(10): 1121-1130. doi: 10.1038/ng.3396.
Temprano-Sagrera G., Sitlani C.M., Bone W.P., Martin-Bornez M., Voight B.F., Morrison A.C. et al. Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. J Thromb Haemost. 2022; 20(6): 1331-1349. doi: 10.1111/jth.15698.
Kiiskinen T., Helkkula P., Krebs K., Karjalainen J., Saarentaus E., Mars N. et al. Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases. Nat Med. 2023; 29(1): 209-218. doi: 10.1038/s41591-022-02122-5.
Matsunaga H., Ito K., Akiyama M., Takahashi A., Koyama S., Nomura S. et al. Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. Circ Genom Precis Med. 2020; 13(3): e002670. doi: 10.1161/CIRCGEN.119.002670.
Van der Harst P., Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ Res. 2018; 122(3): 433-443. doi: 10.1161/CIRCRESAHA.117.312086.
Yamasaki G., Sakurada M., Kitagawa K., Kondo T., Takahashi M., Ueno Y. Effect of FURIN SNP rs17514846 on coronary atherosclerosis in human cardiac specimens: An autopsy study of 106 cases. Leg Med (Tokyo). 2022; 55:102006. doi: 10.1016/j.legalmed.2021.102006.
Ghosh S., Vivar J., Nelson C.P., Willenborg C., Segrè A.V., Mäkinen V.P. et al. Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2015; 35(7): 1712-22. doi: 10.1161/ATVBAHA.115.305513.
Sakaue S., Kanai M., Tanigawa Y., Karjalainen J., Kurki M., Koshiba S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021; 53(10): 1415-1424. doi: 10.1038/s41588-021-00931-x.
Chen H., Zhang L., Mi S., Wang H., Wang C., Jia W. et al. FURIN suppresses the progression of atherosclerosis by promoting macrophage autophagy. FASEB J. 2023; 37(5): e22933. doi: 10.1096/fj.202201762RR.
Akerman A.W., Collins E.N., Peterson A.R., Collins L.B., Harrison J.K., DeVaughn A. et al. miR-133a Replacement Attenuates Thoracic Aortic Aneurysm in Mice. J Am Heart Assoc. 2021; 10(16): e019862. doi: 10.1161/JAHA.120.019862.
Khoury E.E., Knaney Y., Fokra A., Kinaneh S., Azzam Z., Heyman S.N. et al. Pulmonary, cardiac and renal distribution of ACE2, furin, TMPRSS2 and ADAM17 in rats with heart failure: Potential implication for COVID-19 disease. J Cell Mol Med. 2021; 25(8): 3840-3855. doi: 10.1111/jcmm.16310.
Ichiki T., Boerrigter G., Huntley B.K., Sangaralingham S.J., McKie P.M., Harty G.J. et al. Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis. Am J Physiol Regul Integr Comp Physiol. 2013; 304(2): R102-9. doi: 10.1152/ajpregu.00233.2012.
Vodovar N., Seronde M.F., Laribi S., Gayat E., Lassus J., Boukef R. et al. Post-translational modifications enhance NT-proBNP and BNP production in acute decompensated heart failure. Eur Heart J. 2014; 35(48): 3434-41. doi: 10.1093/eurheartj/ehu314.
Kappert K., Meyborg H., Fritzsche J., Urban D., Krüger J., Wellnhofer E. et al. Proprotein convertase subtilisin/kexin type 3 promotes adipose tissue-driven macrophage chemotaxis and is increased in obesity. PLoS One. 2013; 8(8): e70542. doi: 10.1371/journal.pone.0070542.
Swärd P., Rosengren B.E., Jehpsson L., Karlsson M.K. Association between circulating furin levels, obesity and pro-inflammatory markers in children. Acta Paediatr. 2021; 110(6): 1863-1868. doi: 10.1111/apa.15774.
Fathy S.A., Abdel Hamid F.F., Zabut B.M., Jamee A.F., Ali M.A., Abu Mustafa A.M. Diagnostic utility of BNP, corin and furin as biomarkers for cardiovascular complications in type 2 diabetes mellitus patients. Biomarkers. 2015; 20(6-7): 460-9. doi: 10.3109/1354750X.2015.1093032.