Аннотация
Цель исследования – сравнительный анализ фенотипа чувствительности и резистентности к антимикробным препаратам (АМП) клинических изолятов недифтерийных коринебактерий и C. striatum.
Материал и методы. Клинические штаммы Corynebacterium spp. и C. striatum идентифицированы методом MALDI-TоF MS (BioMerieux, Франция), определена их чувствительность и резистентность к АМП диско-диффузионным методом. Проведён анализ геномов 796 штаммов C. striatum, размещенных в международной базе данных NCBI.
Результаты. Установлено, что исследованные клинические изоляты Corynebacterium spp. и C. striatum обладают резистентностью к клиндамицину (62,6–77,5 %). Достоверно чаще (р ≤ 0,05) у штаммов C. striatum выявлена резистентность к бензилпенициллину, ципрофлоксацину, моксифлоксацину, гентамицину, тетрациклину, рифампицину по сравнению с изолятами Corynebacterium spp. Это соотносится с данными о наличии генов резистентности к АМП (erm, acc, aad, aph), обнаруженных в геномах штаммов C. striatum по данным NCBI. Все исследованные клинические штаммы коринебактерий проявляют, в основном, чувствительность к ванкомицину и линезолиду (95,0–98,7 %). Клинические изоляты C. striatum характеризуются наличием резистентности ко многим АМП, часто МЛУ, что отличается от аналогичных показателей у Corynebacterium spp. АМП выбора для лечения инфекций, вызванных C. striatum, являются ванкомицин и линезолид.
Заключение. Учитывая появление отдельных штаммов, обладающих резистентностью к этим АМП, необходим постоянный мониторинг чувствительности и резистентности к АМП C. striatum и Corynebacterium spp.
Annotation
The aim of the study was to comparatively analyze the phenotype of sensitivity and resistance to antimicrobial agents in clinical isolates of non-diphtheria corynebacteria and C. striatum. Clinical strains of Corynebacterium spp. and C. striatum m were identified by mass spectrometry (MALDI-ToFMS, BioMerieux, France), and their sensitivity and resistance to antimicrobial agents (AMPs) were determined using the disk diffusion method. The genomes of 796 C. striatum strains stored in the NCBI international database were analyzed. It was found that the studied clinical isolates of Corynebacterium spp. and C. striatum were resistant to clindamycin (62.6–77.5 %). Resistance to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, tetracycline, and rifampicin was significantly more frequent (p ≤ 0.05) in C. striatum strains compared to Corynebacterium spp. isolates. This was consistent with the presence of AMP resistance genes (erm, acc, aad, aph) found in the genomes of C. striatum strains according to NCBI data. All studied clinical strains of corynebacteria showed mainly sensitivity to vancomycin and linezolid (95.0-98.7%). Thus, clinical isolates of C. striatum were characterized by resistance to many AMPs, often multiple, which differed from similar indicators in Corynebacterium spp. Vancomycin and linezolid are the drugs of choice for treating infections caused by C. striatum. Given the emergence of individual strains resistant to these antibiotics, continuous monitoring of antibiotic susceptibility and resistance is necessary for both C. striatum and Corynebacterium spp.
Key words: C. striatum; Corynebacterium spp; antimicrobial drugs; sensitivity; resistance
Список литературы
ЛИТЕРАТУРА (пп. 1-6, 8-18 см. REFERENCES)
7. Мангутов Э.О., Харсеева Г.Г., Подойницына О.А., Носков А.К., Кругликов В.Д., Алутина Э.Л. и др. Corynebacterium spp.: анализ профилей резистентности к антимикробным препаратам у изолятов от больных с воспалительными заболеваниями респираторного тракта и практически здоровых лиц. Клиническая лабораторная диагностика. 2023; 68(6): 356-64. doi.org/10.51620/0869-2084-2023-68-6-356-364.
REFERENCES
Orosz L., Sóki J., Kókai D., Burián К. Corynebacterium striatum — Got Worse by a Pandemic? J. Pathogens. 2022; 11(6): 685. DOI: 10.3390/pathogens11060685.
Jesus H. N. R., Ramos J. N., Rocha D., Alves D. A., Silva C. S., Cruz J. V.O. et al. The pan-genome of the emerging multidrug-resistant pathogen Corynebacterium striatum. Funct. Integr. Genomics. 2022; 23(1): 5. DOI: 10.1007/s10142-022-00932-x.
Li W., Gao M., Yu J. Rising prevalence and drug resistance of Corynebacterium striatum in lower respiratory tract infections. Front Cell Infect. Microbiol. 2025; 14: 1526312. DOI: 10.3389/fcimb.2024.1526312.
Leyton B., Ramos J. N., Baio P. V. P., Veras J. F. C., Souza C., Burkovski A. et al. Treat Me Well or Will Resist: Uptake of Mobile Genetic Elements Determine the Resistome of Corynebacterium striatum. Int. J. Mol. Sci. 2021; 22: 7499. DOI: 10.3390/ijms22147499
Alibi S., Ferjani A., Boukadida J., Cano M. E., Fernández-Martínez M., Martínez-Martínez L. et al. Occurrence of Corynebacterium striatum as an Emerging Antibiotic-Resistant Nosocomial Pathogen in a Tunisian Hospital. Sci. Rep. 2017; 7: 9704. DOI: 10.1038/s41598-017-10081-y.
Milosavljevic M. N., Milosavljevic J. Z., Kocovic A. G., Stefanovic S. M., Jankovic S. M., Djesevic M. et al. Antimicrobial Treatment of Corynebacterium striatum Invasive Infections: A Systematic Review. Rev. Inst. Med. Trop. São Paulo. 2021; 63: e49. DOI: 10.1590/s1678-9946202163049.
Mangutov E. O., Kharseeva G. G., Podoynitsyna O. A., Noskov A. K., Kruglikov V. D., Alutina E.L. et al. Corynebacterium spp.: analysis of antimicrobial resistanse profiles in isolates from patients with inflammatory diseases of the respiratory tract and practically healthy individuals. Klinicheskaya Laboratornaya Diagnostika. 2023; 68(6): 356-64. DOI: 10.51620/0869-2084-2023-68-6-356-364. (in Russian)
Olender A. Mechanisms of Antibiotic Resistance in Corynebacterium spp. Causing Infections in People. In: Pana M., editor. Antibiotic Resistant Bacteria — A Continuous Challenge in the New Millennium. In Tech; 2012: 387-402. DOI: 10.5772/29418
Goldner N. K., Bulow C., Cho K., Wallace М., Hsu F., Patti G.J. et al. Mechanism of high-level daptomycin resistance in Corynebacterium striatum. mSphere. 2018; 8; 3(4): e00371-18. DOI: 10.1128/mSphereDirect.00371-18.
Dragomirescu C. C., Lixandru B. E., Coldea I. L., Corneli О. N., Pana M., Palade A.М. et al. Antimicrobial susceptibility testing for Corynebacterium species isolated from clinical samples in Romania. Antibiotics. 2020; 9(1): 31. DOI: 10.3390/antibiotics9010031.
Urrutia C., Leyton-Carcaman B., Abanto Marin M. Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum. Int J. Mol. Sci. 2024; 25(19): 10499. DOI: 10.3390/ijms251910499
Sun W., Ma L., Li Y., Xu Y., Wei J., Sa L. et al. In vitro Studies of Non-Diphtheriae Corynebacterium Isolates on Antimicrobial Susceptibilities, Drug Resistance Mechanisms, and Biofilm Formation Capabilities. Infect. Drug. Resist. 2022; 15: 4347-59. DOI: 10.2147/IDR.S376328
Sabbagh P., Rajabnia M., Maali A., Ferdosi-Shahandashti E. Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iran J. Basic. Med. Sci. 2021; 24(2): 136-42. DOI: 10.22038/ijbms.2020.48905.11208.
Wen J., Wang Z., Du Х., Liu R., Wang J. Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum. Ann. Clin. Microbiol. Antimicrob. 2022; 21(1): 53. DOI: 10.1186/s12941-022-00546-y.
Tauch A., Krieft S., Kalinowski J., Pühler A. The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol. Gen. Genet. 2000; 263: 1-11. DOI: 10.1007/pl00008668
Qiu J., Shi Y., Zhao F., Xu Y., Xu H., Dai Y., Cao Y. The Pan-Genomic Analysis of Corynebacterium striatum Revealed Its Genetic Characteristics as an Emerging Multidrug-Resistant Pathogen. Evol. Bioinform. 2023; 19:11769343231191481. doi: 10.1177/11769343231191481.
Nageeb W.M., Hetta H.F. Pangenome Analysis of Corynebacterium striatum: Insights into a Neglected Multidrug-Resistant Pathogen. BMC Microbiol. 2023; 23:252. doi: 10.1186/s12866-023-02996-6.
Fernandez-Roblas R., Adames H., Martín-de-Hijas N.Z., García Almeida D., Gadea I., Esteban J. In vitro activity of tigecycline and 10 other antimicrobials against clinical isolates of the genus Corynebacterium. 2009; 33: 453-55. DOI: 10.1016/j.ijantimicag.2008.11.001
Hagiya H., Kimura K., Okuno H., Hamaguchi S., Morii D., Yoshida H. et al. Bacteremia due to high-level daptomycin-resistant Corynebacterium striatum: A case report with genetic investigation. J. Infect. Chemother. 2019; 25: 906-08. DOI: 10.1016/j.jiac.2019.04.009.