Список литературы
Raedle-Hurst T., Mueller M., Meinitzer A., März W., Dschietzig T. Homoarginine — A prognostic indicator in adolescents and adults with complex congenital heart disease? Fukumoto Y., ed. PLoS One 2017; 12(9): e0184333.
Atzler D., Baum C., Ojeda F., Keller T., Cordts K., Schnabel R.B. et al. Low homoarginine levels in the prognosis of patients with acute chest pain. J. Am. Heart Assoc. 2016; 5(4): e002565.
März W., Meinitzer A., Drechsler C., Pilz S., Krane V., Wanner C. Homoarginine as a biomarker for the risk of mortality. Patent US 9,506,909 B2; 2016.
Atzler D., Appelbaum S., Cordts K., Ojeda F.M., Wild P.S., Münzel T., et al. Reference intervals of plasma homoarginine from the German Gutenberg Health Study. Clin. Chem. Lab. Med. 2016; 54(7): 1231-7.
Жлоба А.А., Субботина Т.Ф., Молчан Н.С. Значение определения уровня гомоаргинина у пациентов с ишемической болезнью сердца при операциях реваскуляризации миокарда. Клиническая лабораторная диагностика. 2018; 63(5): 281-6
Niekamp C., Atzler D., Ojeda F.M., Sinning C.R., Lackner K.J., Böger R.H., et al. Cross-sectional associations between homoarginine, intermediate phenotypes, and atrial fibrillation in the community-The Gutenberg Health Study. Biomolecules. 2018; 8(3) pii: E86.
Zhloba A.A., Subbotina T.F., Lupan D.S., Bogova V.A., Kusheleva O.A. Arginine and lysine as products of basic carboxypeptidase activity associated with fibrinolysis. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2012; 6(3): 261-5.
Титов В. Н., Рожкова Т.А., Каминная В.И., Алчинова И.Б. Атеросклероз и атероматоз — два последовательных нарушения метаболизма, патология биологических функций трофологии и функции эндоэкологии. Основы профилактики ишемической болезни сердца. Клиническая лабораторная диагностика. 2018; 63(4): 196-204.
Ариповский А. В., Титов В.Н. Биологически активные пептиды в регуляции метаболизма. Пептоны, аминокислоты, жирные кислоты, липопротеины, липиды и действие нутрицевтиков. Клиническая лабораторная диагностика. 2019; 64(1): 14-23.
Maltais-Payette I., Boulet M.M., Prehn C., Adamski J., Tchernof A. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr. Metab. (Lond). 2018; 15: 78.
Yi P., Melnyk S., Pogribna M., Pogribny I.P., Hine R.J., James S.J. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 2000; 275(38): 29318-23.
Xiao Y., Su X., Huang W., Zhang J., Peng C., Huang H. et al. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int. J. Biochem. Cell Biol. 2015; 67: 158-66.
Laposata’s Laboratory Medicine: Diagnosis of Disease in the Clinical Laboratory. 3rd ed. Laposata M., ed.; 2019. Available at: https://accessmedicine.mhmedical.com/content.aspx?bookid=2503§ionid=201361245 (Accessed 7 May 2019).
Geidenstam N., Magnusson M., Danielsson A.P.H., Gerszten R.E., Wang T.J., Reinius L.E. et al. Amino acid signatures to evaluate the beneficial effects of weight loss. Int. J. Endocrinol. 2017: 6490473.
Dhar I., Svingen G.F.T., Ueland P.M., Lysne V., Svenningsson M.M., Tell G.S., Plasma cystathionine and risk of incident stroke in patients with suspected stable angina pectoris. J. Am. Heart Assoc. 2018; 7(17): e008824.
Субботина Т.Ф., Жлоба А.А., Алексеевская Е.С., Бируля И.В. Интерпретация аминокислотного профиля плазмы крови с использованием полимаркерного подхода. Ученые Записки СПбГМУ. 2015; 22(4): 76-80
Fukagawa N.K., Martin J.M., Wurthmann A., Prue A.H., Ebenstein D., O’Rourke B. Sex-related differences in methionine metabolism and plasma homocysteine concentrations. Am. J. Clin. Nutr. 2000; 72(1): 22-9.
Midttun Ø., Theofylaktopoulou D., McCann A., Fanidi A., Muller D.C., Meyer K. Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am. J. Clin. Nutr. 2017; 105(6): 1314-26.
Lepage N., McDonald N., Dallaire L., Lambert M. Age-specific distribution of plasma amino acid concentrations in a healthy pediatric population. Clin. Chem. 1997; 43(12): 2397-402.
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018, 4(1): 11-6.
Жлоба А.А. Лабораторная диагностика при гипергомоцистеинемии. Клинико-лабораторный консилиум. 2009; 26(1): 49-60
Garlick P.J. Toxicity of methionine in humans. J. Nutr. 2006; 136(6 Suppl):1722S-1725S.
Shapira N. Commentary: differential effects of high-protein diets derived from soy and casein on blood-brain barrier integrity in wild-type mice. Front Nutr. 2018; 5: 67.
Dhar I., Svingen G.F.T., Pedersen E.R., DeRatt B., Ulvik A., Strand E. Et al. Plasma cystathionine and risk of acute myocardial infarction among patients with coronary heart disease: results from two independent cohorts. Int. J. Cardiol. 2018; 266: 24-30.
Dhar I., Lysne V., Seifert R., Svingen G.F.T., Ueland P.M., Nygård O.K. Plasma methionine and risk of acute myocardial infarction: Effect modification by established risk factors. Atherosclerosis. 2018; 272: 175-181.
Жлоба А.А., Субботина Т.Ф., Шипаева К.А. Способ определения содержания гомоаргинина в плазме крови и других биологических жидкостях человека. Патент РФ. № 2609873; 2017
Zhloba A.A., Subbotina T.F. Homocysteinylation score of high-molecular weight plasma proteins. Amino Acids. 2014; 46(4): 893-9.
Meinitzer A., Puchinger M., Winklhofer-Roob B.M., Rock E., Ribalta J., Roob J.M. et al. Reference values for plasma concentrations of asymmetrical dimethylarginine (ADMA) and other arginine metabolites in men after validation of a chromatographic method. Clin. Chim. Acta; Int. J. Clin. Chem. 2007; 384(1-2): 141-8.
Chafai A., Fromm M.F., König J., Maas R. The prognostic biomarker L-homoarginine is a substrate of the cationic amino acid transporters CAT1, CAT2A and CAT2B. Sci. Rep. 2017; 7: 4767.
Maltais-Payette I., Boulet M.M., Prehn C., Adamski J., Tchernof A. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr. Metab. (Lond.); 2018; 15: 78.
Жлоба А.А., Маевская Е.Г. Дисфункция анаплеротического пути энергетического метаболизма от аминокислот к сукцинату у лиц старшей возрастной группы. Артериальная Гипертензия. 2011; 17(1): 74-8
Geidenstam N., , Al-Majdoub M., Ekman M. , Spégel P., Ridderstråle M. Metabolite profiling of obese individuals before and after a one year weight loss program International. J. Obes. 2017; 41: 1369-78.
Libert D.M., Nowacki A.S., Natowicz M.R., Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. Peer J. 2018; 6: e5410.
Tessari P., Coracina A., Kiwanuka E., Vedovato M., Vettore M., Valerio A. et al. Effects of insulin on methionine and homocysteine kinetics in type 2 diabetes with nephropathy. Diabetes. 2005; 54(10): 2968-76.
Gao J., Cahill C.M., Huang X., Roffman J.L., Lamon-Fava S., Fava M. et al. S-adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics. 2018; 15(1):156-75.
Pacana T., Cazanave S., Verdianelli A., Patel V., Min H.-K., Mirshahi F. et al. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease PLoS One. 2015; 10(8): e0136822.
Joseph J., Loscalzo J. Methoxistasis: Integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients. 2013; 5(8): 3235-56.
Goulart V.A.M., Sena M.M., Mendes T.O., Menezes H.T., Cardeal Z.L., Paiva M.J.N. et al. Amino acid biosignature in plasma among ischemic stroke subtypes. BioMed Res. Int. 2019; Article ID 8480468. https://doi.org/10.1155/2019/8480468.