Аннотация
Мультипотентные мезенхимальные стромальные клетки (МСК) оправданно привлекают широкое внимание специалистов
в области регенеративной медицины и клеточной терапии из-за способности к самообновлению, многолинейной дифференцировке и иммунной регуляции. Биологические эффекты МСК значительно варьируют при различных физиологических и патологических состояниях и во многом определяются уровнем экспрессии различных регуляторных факторов, участвующих
в межклеточной коммуникации и совокупно известных как секретом. Секретом МСК представляет собой динамическую
систему — набор факторов, состав которого в значительной степени может изменяться в ответ на изменение клеточного
микроокружения и развитие сенесцентных изменений в клетках, что объясняет его значимый биологический эффект и
влияние на процесс хронического неспецифического воспаления в окружающих тканях. Учитывая появляющиеся данные о
возможности и преимуществах использования секретома МСК с терапевтической целью, важно оценивать его возможные
изменения, обусловленные вероятным накоплением сенесцентных клеток, что потенциально способно привести к развитию
и усугублению низкоуровневого воспаления. Обзор посвящён анализу методов исследования секретома МСК, оценке его диагностического значения при потенциальном применении секретома как бесклеточного продукта в различных клинических условиях. Поиск литературных источников проводился по базам данных Scopus, Web of Science, MedLine, The Cochrane Library,
EMBASE, Global Health, CyberLeninka, РИНЦ
Annotation
Multipotent mesenchymal stromal cells (MSCs) reasonably attract wide attention of specialists in the field of regenerative medicine
and cell therapy due to their ability to self-renewal, multilinear differentiation, and immune regulation. MSCs biological effects vary significantly under different physiological and pathological conditions and are largely determined by expression of plenty regulatory
factors involved in intercellular communication known as secretome and critical for the regulation of key biological processes.
Secretome MSC is a dynamic system — a set of factors, the composition of which can largely change in response to changes in the
cellular microenvironment, which explains the significant biological effect of the secretome. Modeling the functional properties of
MSCs during the development of cell senescence to a certain extent creates conditions for the development and progression of chronic
nonspecific inflammation in surrounding tissues, which is due not only to senescent changes in the cells themselves, but also to changes
in the cellular microenvironment in the process of accumulation of senescent cells. Given the emerging data on the possibility and
benefits of using the MSC secretome for therapeutic purposes, it is extremely important to evaluate its possible changes due to the
likely accumulation of senescent cells, which can potentially lead to the development and exacerbation of low-level inflammation. This
review is devoted to analysis of methods for studying MSC secretome, as well as their diagnostic value in the potential use of secretome
as a cell-free product in various clinical settings. The literature sources search was carried out in the Scopus, Web of Science, MedLine,
The Cochrane Library, EMBASE, Global Health, CyberLeninka, RSCI databases.
Key words: MSC; mesenchymal stromal cells; secretome; inflammaging; age-dependent changes;conditioned medium; secretory
phenotype; SASP; review
Список литературы
1. Fraile M., Eiro N., Costa L.A., Martín A., Vizoso F.J. Aging and
mesenchymal stem cells: basic concepts, challenges and strategies.
Biology (Basel). 2022; 11(11):1678. DOI: 10.3390/biology11111678.
2. Ahangar P., Mills S.J., Cowin A.J. Mesenchymal stem cell secretome
as an emerging cell-free alternative for impoting wound repair. Int. J.
Mol. Sci. 2020; 21:7038. DOI: 10.3390/ijms21197038
3. Lyamina S., Baranovskii D., Kozhevnikova E., Ivanova T., Kalish S.,
Sadekov T., Klabukov I., Maev I., Govorun V. Mesenchymal stromal
cells as a driver of inflammaging. Int. J. Mol. Sci. 2023; 24(7):6372.
DOI: 10.3390/ijms24076372.
4. Schulman I.H., Balkan W., Hare J.M. Mesenchymal stem cell therapy for aging frailty. Front. Nutr. 2018; 15; 5:108. DOI: 10.3389/
fnut.2018.00108.
5. Sharpless N.E., Sherr C.J. Forging a signature of in vivo senescence.
Nat. Rev. Cancer. 2015; 15(7):397-408. DOI: 10.1038/nrc3960.
6. Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation,
cultivation, and characterization of human mesenchymal stem cells.
Cytom. Part A. 2018; 93:19-31. DOI: 10.1002/cyto.a.23242.
7. Krasilnikova O.A., Baranovskii D.S., Lyundup A.V., Shegay P.V.,
Kaprin A.D., Klabukov I. D. Stem and somatic cell monotherapy
for the treatment of diabetic foot ulcers: review of clinical studies
and mechanisms of action. Stem. Cell Reviews and Reports. 2022;
18(6):1974-85. DOI: 10.1007/s.12015-022-10379-z.
8. Vizoso F.J., Eiro N., Cid S., Schneider J., Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies
in regenerative medicine. Int. J. Mol. Sci. 2017; 18(9):1852. DOI:
10.3390/ijms18091852.
9. Beer L., Mildner M., Ankersmit H.J. Cell secretome based drug
substances in regenerative medicine: when regulatory affairs meet
basic science. Ann. Transl. Med. 2017; 5:170. DOI: 10.21037/
atm.2017.03.50.
10. Neri S., Borzi R.M. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules. 2020; 10:340. DOI:
10.3390/biom10020340.
11. Li Y., Sheng Q., Zhang C., Han C., Bai H., Lai P., Fan Y., Ding Y., Dou
X. STAT6 up-regulation amplifies M2 macrophage anti-inflammatory
capacity through mesenchymal stem cells. Int. Immunopharmacol.
2021; 91:107266. DOI: 10.1016/j.intimp.2020.107266.
12. Nonnis S., Maffioli E., Zanotti L., Santagata F., Negri A., Viola A.,
Elliman S., Tedeschi G. Effect of fetal bovine serum in culture media
on MS analysis of mesenchymal stromal cells secretome. EuPA Open
Proteomics. 2016; 10:28-30. DOI: 10.1016/j.euprot.2016.01.005.
13. Sarkar P., Randall S.M., Muddiman D.C., Rao B.M. Targeted proteomics of the secretory pathway reveals the secretome of mouse embryonic fibroblasts and human embryonic stem cells. Mol. Cell Proteomics. 2012; 11(12):1829-39. DOI: 10.1074/mcp.M112.020503.
14. Li Y.J., Xu P., Qin X. A comparative analysis of the information content in long and short SAGE libraries. BMC Bioinformatics. 2006;
7:504. DOI: 10.1186/1471-2105-7-504.
15. Malone J.H., Oliver B. Microarrays, deep sequencing and the
true measure of the transcriptome. BMC Biol. 2011; 9:34. DOI:
10.1186/1741-7007-9-34.
16. Gallotta A., Orzes E., Fassina G. Biomarkers quantification with antibody arrays in cancer early detection. Clin. Lab. Med. 2012; 32(1):33-
45. DOI: 10.1016/j.cll.2011.11.001.
17. Mukherjee P., Mani S. Methodologies to decipher the cell secretome.
Biochim. Biophys. Acta. 2013; 1834(11):2226-32. DOI: 10.1016/j.
bbapap.2013.01.022.
18. Lee S., Kang J., Ren S., Laurell T., Kim S., Jeong O.C. A cross-contamination-free SELEX platform for a multi-target selection strategy.
Biochip. J. 2013; 7:38-45. DOI: 10.1007/s13206-013-7106-y.
19. Shangguan, D., Li, Y., Tang Z.W., Cao Z.H.C., Chen H.W., Mallikaratchy P., Sefah K., Yang C.Y.J., Tan W.H. Aptamers evolved from
live cells as effective molecular probes for cancer study. Proc. Natl.
Acad. Sci. USA. 2006; 103:11838-43. DOI: 10.1073/pnas0602615103.
20. Munoz-Perez E., Gonzalez-Pujana A., Igartua M., Santos-Vizcaino E.,
Hernandez R.M. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in
Isolation, Content Optimization and Delivery Avenues. Pharmaceutics. 2021; 13(11):1802. DOI: 10.3390/pharmaceutics13111802.
21. Phelps J., Sanati-Nezhad A., Ungrin M., Duncan N.A., Sen A. Bioprocessing of Mesenchymal Stem Cells and their Derivatives: Toward
Cell-Free Therapeutics. Stem. Cells Int. 2018; 2018:9415367. DOI:
10.1155/2018/9415367.
22. Wiklander O.P.B., Brennan M.A., Lotvall J., Breakefield X.O., El
Andaloussi S. Advances in Therapeutic Applications of Extracellular Vesicles. Sci. Transl. Med. 2019; 11. DOI: 10.1126/scitranslmed.
aav8521.
23. Gardiner C., Di Vizio D., Sahoo S., Thery C., Witwer K.W., Wauben
M., Hill A.F. Techniques used for the Isolation and Characterization
of Extracellular Vesicles: Results of a Worldwide Survey. J. Extracell
Vesicles. 2016; 5:32945. DOI: 10.3402/jev.v5.32945.
24. Lobb R.J., Becker M., Wen S.W., Wong C.S., Wiegmans A.P.,
Leimgruber A., Moller A. Optimized Exosome Isolation Protocol for
Cell Culture Supernatant and Human Plasma. J. Extracell. Vesicles.
2015; 4:27031. DOI: 10.3402/jev.v4.27031.
25. Royo F., Thery C., Falcon-Perez J.M., Nieuwland R., Witwer K.W.
Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor
and Standardization Subcommittee. Cells. 2020; 9:1955. DOI:
10.3390/cells9091955.
26. Monguio-Tortajada M., Galvez-Monton C., Bayes-Genis A., Roura
S., Borras F.E. Extracellular Vesicle Isolation Methods: Rising Impact of Size-Exclusion Chromatography. Cell Mol. Life Sci. 2019;
76:2369-82. DOI: 10.1007/s00018-019-03071-y.
27. Wan Y., Cheng G., Liu X., Hao S.-J., Nisic M., Zhu C.-D., Xia Y.-Q.,
Li W.-Q., Wang Z.-G., Zhang W.-L., Rice S.J., Sebastian A., Albert
I., Belani C.P., Zheng S.-Y., Rapid magnetic isolation of extracellular
vesicles via lipid-based nanoprobes. Nat. Biomed. Eng. 2017; 1:0058.
DOI: 10.1038/s41551-017-0058.
28. Pachler K., Lener T., Streif D., Dunai Z.A., Desgeorges A., Feichtner M., Öller M., Schallmoser K., Rohde E., Gimona M., A Good
Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy. 2017; 19:458-72. DOI: 10.1016/j.jcyt.2017.01.001.
29. Fierabracci A., Fattore A., Muraca M. The Immunoregulatory Activity of Mesenchymal Stem Cells: ‘State of Art’ and ‘Future Avenues.
Curr. Med. Chem. 2016; 23:3014-24. DOI: 10.2174/0929867323666
160627112827.
30. Eleuteri S., Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int. J. Mol. Sci. 2019;
20:4597. DOI: 10.3390/ijms20184597.
31. Nakanishi C., Nagaya N., Ohnishi S., Yamahara K., Takabatake S.,
Konno T., Hayashi K., Kawashiri M.A., Tsubokawa T., Yamagishi
M. Gene and protein expression analysis of mesenchymal stem cells
derived from rat adipose tissue and bone marrow. Circ. J. 2011; 75:
2260-8. DOI: 10.1253/circj.cj.-11-0246.
32. Konala V.B.R., Bhonde R., Pal R. Secretome studies of mesenchymal
stromal cells (MSCs) isolated from three tissue sources reveal subtle
differences in potency. In Vitro Cell. Dev. Biol. Anim. 2020; 56:689-
700. DOI: 10.1007/s11626-020-00501-1.
33. Amable P.R., Teixeira M.V., Carias R.B., Granjeiro J.M., Borojevic R.
Protein synthesis and secretion in human mesenchymal cells derived
from bone marrow, adipose tissue and Wharton’s jelly. Stem. Cell Res.
Ther. 2014; 5:53. DOI: 10.1186/scrt442.
34. Matejckova N., Zajicova A., Hermankova B., Kossl J., Bohacova P.,
Holan V., Javorkova E. Characterisation of mesenchymal stem cells
from patients with amyotrophic lateral sclerosis. Journal of clinical
pathology. 2018; 71(8):735-42. DOI: 10.1136/jclinpath-2017-204681.
35. Hickson L.J., Eirin A., Conley S.M., Taner T., Bian X., Saad A. et al. Diabetic kidney disease alters the transcriptome and function of
human adipose-derived mesenchymal stromal cells but maintains immunomodulatory and paracrine activities important for renal repair.
Diabetes. 2021; 70(7):1561-74. DOI: 10.2337/DB19-1268.
36. Morris A.D., Dalal S., Li H., Brewster L.P. Human diabetic mesenchymal stem cells from peripheral arterial disease patients promote
angiogenesis through unique secretome signatures. Surgery. 2018;
163(4):870–6. DOI: 10.1016/j.surg.2017.11.018.
37. Gómez-Aristizábal A., Sharma A., Bakooshli M. A., Kapoor M., Gilbert P. M., Viswanathan S., Gandhi R. Stage-specific differences in
secretory profile of mesenchymal stromal cells (MSCs) subjected to
early- vs late-stage OA synovial fluid. Osteoarthritis and cartilage.
2017; 25(5):737-41. DOI: 10.1016/j.joca.2016.11.010.
38. Ferreira J.R., Teixeira G.Q., Santos S.G., Barbosa M.A., Almeida-Porada G., Gonçalves R.M. Mesenchymal stromal cell secretome:
influencing therapeutic potential by cellular pre-conditioning. Front.
Immunol. 2018; 9:2837. DOI: 10.3389/fimmu.2018.02837.
39. Wangler S., Kamali A., Wapp C., Wuertz-Kozak K., Häckel S., Fortes
C. et al. Uncovering the secretome of mesenchymal stromal cells
exposed to healthy, traumatic, and degenerative intervertebral discs:
a proteomic analysis. Stem. Cell Res. Ther. 2021; 12(1):11. DOI:
10.1186/s13287-020-02062-2.
40. Lu Z., Chen Y., Dunstan C., Roohani-Esfahani S., Zreiqat H. Priming
adipose stem cells with tumor necrosis factor-alpha preconditioning
potentiates their exosome efficacy for bone regeneration. Tissue Eng
A. 2017; 23(21-22):1212-20. DOI: 10.1089/ten.tea.0548