Список литературы
Mosby. Mosby’s medical dictionary, 8th ed. St. Louis, Mo.: Elsevier; 2009.
Eastell R., Brandi M.L., Costa A.G., D’Amour P., Shoback D.M., Thakker R.V. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014;99(10): 3570-9.
Weckesser L.J., Plessow F., Pilhatsch M., Muehlhann M., Kirschbaum C., Miller R. Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research. Psychoneuroendocrinology. 2014;46: 88-99.
Lindsay A., Lewis J.G., Scarrot C., Gill N., Gieseg S.P., Draper N. Assessing the effectiveness of selected biomarkers in the acute and cumulative physiological stress response in professional rugby union through non-invasive assessment. Int. J. Sports Med. 2015;36(6): 446-54.
Schneyer L.H., Young J.A., Schneyer C.A. Salivary secretion of electrolytes. Physiol. Rev. 1972;52(3):720-7.
Kreusser W., Heidland A., Hennemann H., Wigand M.E., Knauf H. Mono- and divalent electrolyte patterns, pCO2 and pH in relation to flow rate in normal human parotid saliva. Eur. J. Clin. Invest. 1972;2(6): 398-406.
Chicharro J.L., Lucia A., Perez M., Vaquero A.F., Urena R. Saliva composition and exercise. Sports Med. 1998;26(1):17-27.
Cadore E., Lhullier F., Brentano M., Silva E., Ambrosini M., Spinelli R. et al. Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J. Sports Med. 2008;26(10):1067-72.
Sannikka E., Terho P., Suominen J., Santti R. Testosterone concentrations in human seminal plasma and saliva and its correlation with non-protein-bound and total testosterone levels in serum. Int. J. Androl. 1983;6(4):319-30.
Baum B.J. Neurotransmitter control of secretion. J. Dent. Res. 1987;66(1):628-32.
Bokemeyer C., Bondarenko I., Hartmann J.T., de Braud F., Schuch G., Zubel A. et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann. Oncol. 2011;22(7):1535-46.
Ramos D., Martins E.G., Viana-Gomez D., Casimiro-Lopez G., Salerno V.P. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Appl. Physiol. Nutr. Metab. 2013;38(5):507-11.
de Oliviera V.N., Bessa A., Lamounier R.P.M.S., de Santana M.G., de Mello M.T., Espindola F.S. Changes in the salivary biomarkers induced by an effort test. Int. J. Sports Med. 2010;31(6):377-81.
Turpeinen U., Hamalainen E. Determination of cortisol in serum, saliva and urine. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27(6):795-801.
Heintze U., Birkhed D., Bjorn H. Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed. Dent. J. 1983;7(6):227-38.
Watanabe S., Dawes C. The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man. Arch. Oral. Biol. 1988;33(1):1-5.
Pilardeau P., Richalet J.P., Bouissou P., Garnier M., Vaysse J., Margo J.N. et al. Secretion salivaire et exercise physique. Med. Sport. 1992;66(3-4):111-4.
Bosch J.A., Ring C., de Geus E.J.C., Veerman E.C.I., Amerongen A.V.N. Stress and secretory immunity. Int. Rev. Neurobiol. 2002;52:213-53.
Bishop N.C., Walker G.J., Scanlon G.A., Richards S., Rogers E. Salivary IgA responses to prolonged intensive exercise following caffeine ingestion. Med. Sci. Sports Exerc. 2006;38(3):513-9.
Sari-Sarraf V., Reilly T., Doran D.A., Atkinson G. The effects of single and repeated bouts of soccer-specific exercise on salivary IgA. Arch. Oral. Biol. 2007;52(6):526-32.
Granger D.A., Weisz J.R., McCracken J.T., Kauneckis D., Ikeda S. Testosterone and conduct problems. J. Am. Child. Adolesc. Psychiatry. 1994;33(6):908.
Muramatsu Y., Takaesu Y. Oral health status related to subgingival bacterial flora and sex hormones in saliva during pregnancy. Bull. Tokyo Dent. Coll. 1994;35(3):139-51.
Bishop N.C., Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front. Biosci. 2009;14(2):4444-56.
Guthrie R., Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338-43.
Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Analyt. Chem. 2009;28(8):925-42.
Clinical and laboratory standards institute. Blood collection on filter paper for newborn screening programs. Approved standard, 6th ed. NBS01-A6. Wayne, PA: Clinical and Laboratory Standards Institute; 2013.
Chen J., Hsieh Y. Stabilizing drug molecules in biological samples. Ther. Drug Monit. 2005;27(5):617-24.
Li W., Zhang J., Tse F.L.S. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed. Chromatogr. 2011;25(1-2):258-77.
van Amsterdam P., Waldrop C. The application of dried blood spot sampling in global clinical trials. Bioanalysis. 2010;2(11):1783-6.
Fokkema M.R., Bakker A.J., de Boer F., Kooistra J., de Vries S., Wolthuis A. HbA1c measurements from dried blood spots: validation and patient satisfaction. Clin. Chem. Lab. Med. 2009;47(10):1259-64.
Leichtle A.B., Ceglarek U., Witzigmann H., Gabel G., Thiery J., Fiedler G.M. Potential of dried blood self-sampling for cyclosporine C2 monitoring in transplant outpatients. J. Transplant. 2010;6:1-6.
Alodaib A., Carpenter K., Wiley V., Sim K., Christodoulou J., Wilcken B. An improved ultra performance liquid chromatography-tandem mass spectrometry method for the determination of alloisoleucine and branched chain amino acids in dried blood samples. Ann. Clin. Biochem. 2011;48(5):468-70.
Merton G., Jones K., Lee M., Johnston A., Holt D.W. Accuracy of cyclosporin measurements made in capillary blood samples obtained by skin puncture. Ther. Drug Monit. 2000;22(5):594-8.
Woods K., Douketis J.D., Schnurr T., Kinnon K., Powers P., Crowther M.A. Patient preferences for capillary vs. venous INR determination in an anticoagulation clinic: a randomized controlled trial. Thromb. Res. 2004;114(3):161-5.
Mee J.M.L., Korth J., Halpern B. Rapid and quantitative blood analysis for free fatty acids by chemical ionization mass spectrometry. Anal. Lett. 1976;9(12):1075-83.
Chace D.H., Kalas T.A., Naylor E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003;49(11):1797-1817.
Thomas A., Geyer H., Guddat S., Schanzer W., Thevis M. Dried blood spots (DBS) for doping control analysis. Drug Test. Anal. 2011;3(11-12):806-13.
Tretzel L., Thomas A., Geyer H., Pop V., Schanzer W., Thevis M. Dried blood spots (DBS) in doping controls: a complementary matrix for improved in- and out-of-competition sports drug testing strategies. Anal. Methods. 2015;7(18):7596-7605.
Thevis M., Kuuranne T., Dib J., Thomas A., Geyer H. Do dried blood spots (DBS) have the potential to support result management processes in routine sports drug testing? Drug Test. Anal. 2020;12(6):704-10.
Lange T., Thomas A., Walpurgis K., Thevis M. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal. Bioanal. Chem. 2020;412(14):3765-77.