Список литературы
Piticchio T., Le Moli R., Tumino D., Frasca F. Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic-A comprehensive review. J. Endocrinol. Invest. 2021; 1: 1-18.
WHO Coronavirus Disease (COVID-19) Dashboard, 2:31 pm CEST, 22 Nov 2020.
Мокрышева Н.Г., Галстян Г.Р., Киржаков М.А., Еремкина А.К., Пигарова Е.А., Мельниченко Г.А. Пандемия COVID-19 и эндокринопатии. Проблемы эндокринологии. 2020; 66(1): 7-13
Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-80.
Isidori A.M., Pofi R., Hasenmajer V., Lenzi A., Pivonello R. Use of glucocorticoids in patients with adrenal insufficiency and COVID-19 infection. Lancet Diabetes Endocrinol. 2020; 8(6): 472-3.
Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Infez Med. 2020; 28(2): 174-84.
Malek Mahdavi A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: implications for a potential treatment for COVID-19. Rev. Med. Virol. 2020; 30(5): e2119-21.
Asselta R., Paraboschi E.M., Mantovani A., Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020; 12(11):10087-98.
Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020; 9(1): 45-8.
Bennett C.L., Price D.K., Kim S., Liu D., Jovanovic B.D., Nathan D. et al. Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J. Clin. Oncol. 2002; 20: 3599-604.
Wambier C.V., Vano-Galvan S., McCoy J., Gomez-Zubiaur A., Herrera S., Hermosa-Gelbard Á. et al. Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: The “Gabrin sign”. J. Am. Acad.Dermatol. 2020; 83(2): 680-2.
Montopoli M., Zumerle S., Vettor R., Rugge M., Zorzi M., Catapano C.V. et al. Androgen deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study. Ann. Oncol. 2020; 31(8): 1040-5.
Mishra J.S., Hankins G.D., Kumar S. Testosterone downregulates angiotensin II type-2 receptor via androgen receptor-mediated ERK1/2 MAP kinase pathway in rat aorta. J. Renin Angiotensin Aldosterone Syst. 2016; 17(4): 1470320316674875-7.
Трошина Е.А., Мельниченко Г.А., Сенюшкина Е.С., Мокрышева Н.Г. Адаптация гипоталамо-гипофизарно-тиреоидной и гипоталамо-гипофизарно-надпочечниковой систем к новому инфекционному заболеванию — COVID-19 в условиях развития COVID-19-пневмонии и/или цитокинового шторма. Клиническая и экспериментальная тиреоидология. 2020; 16(1): 21-7
Lazartigues E., Qadir M.M.F., Jarvis F.M. Endocrine significance of SARS-CoV-2’s reliance on ACE2. Endocrinology. 2020; 161(9): 1-7.
Chi M., Shi X., Huo X., Wu X., Zhang P., Wang G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. Ann. Transl. Med. 2020; 8(8): 531-4.
Yao X.H., Li T.Y., He Z.C. A pathological report of three COVID-19 cases by minimal invasive autopsies. Chin. J. Pathol. 2020; 49(5): 411-7.
Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple organ infection and the pathogenesis of SARS. JEM. 2005; 202: 417-24.
Wei L., Sun S., Zhang J., Zhu H., Xu Y., Ma Q. et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem. Cell Biol. 2010; 88: 723-30.
Ye Y.X., Wang W., Yao H., Li H.M., Sun L.Q., Wang A.S. et al. Change in hormones of related sexual function in patients with severe acute respiratory syndrome. Label Immunoass. Clin. Med. 2004; 11: 63-5.
Leow M.K., Kwek D.S., Ng A.W., Ong K.C., Kaw G.J., Lee L.S. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin. Endocrinol. (Oxf). 2005; 63: 197-202.
Zhou L., Zhang M., Wang J., Gao J. Sars-Cov-2: underestimated damage to nervous system. Travel. Med. Infect. Dis. 2020; 36: 101642-5.
Li T., Wang L., Wang H., Gao Y., Hu X., Li X. et al. Characteristics of laboratory indexes in COVID-19 patients with non-severe symptoms in Hefei City, China: diagnostic value in organ injuries. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(12): 2447-55.
Wei L., Sun S., Xu C., Zhanga J., Xu Y., Zhu H. et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007; 38: 95-102.
Wang W., Ye Y.X., Yao H. Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J. Chin. Antituberc. Assoc. 2003; 25: 232-4.
Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014; 24(10): 1456-65.
Chen M., Zhou W., Xu W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study. Thyroid. 2021; 31(1): 8-11.
Chen T., Wu D., Chen H., Yan W., Yang D., Chen G. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368: m1091-3.
Gao W., Guo W., Guo Y., Shi M., Dong G., Wanget G. al. Thyroid hormone concentrations in severely or critically ill patients with COVID-19. J. Endocrinol. Invest. 2020; 2020: 1-10.
Khoo B., Tan T., Clarke S.A., Mills E.G., Patel B., Modi M. et al. Thyroid function before, during and after COVID-19. J. Clin. Endocrinol. Metab. 2021; 106: e803-11.
Brancatella A., Ricci D., Viola N., Sgrò D., Santini F., Latrofa F. Subacute thyroiditis after sars-COV-2 infection. J. Clin. Endocrinol. Metab. 2020; 105(7): a276-9.
Lania A., Sandri M.T., Cellini M., Mirani M., Lavezzi E., Mazziotti G. Thyrotoxicosis in patients with COVID-19: the THYRCOV study. Eur. J. Endocrinol. 2020; 183(4): 381-7.
Zinserling V.A., Semenova N.Y., Markov A.G., Rybalchenko O.V., Wang J., Rodionov R.N. et al. Inflammatory cell infiltration of adrenals in COVID-19. Horm. Metab. Res. 2020; 52(9): 639-41.
Freire Santana M., Borba M.G.S., Baía-da-Silva D.C., Val F., Alexandre M.A.A., Brito-Sousa J.D. et al. Case report: adrenal pathology findings in severe COVID-19: an autopsy study. Am. J. Trop. Med. Hyg. 2020; 103(4): 1604-7.
Iuga A.C., Marboe C.C., Yilmaz M.M., Lefkowitch J.H., Gauran C., Lagana S.M. Adrenal vascular changes in COVID-19 autopsies. Arch. Pathol. Lab. Med. 2020; 144(10): 1159-60.
Frankel M., Feldman I., Levine M., Frank Y., Bogot N.R., Benjaminov O. et al. Bilateral adrenal hemorrhage in Coronavirus disease 2019 patient: a case report. J. Clin. Endocrinol. Metab. 2020; 105(12): a487-8.
Yang M., Chen S., Huang B., Zhong J.M., Su H., Chen Y.J. et al. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur. Urol. Focus. 2020; 6(5): 1124-9.
Achua J.K., Chu K.Y., Ibrahim E., Khodamoradi K., Delma K.S., Iakymenko O.A. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections on testis. World J. Mens Health. 2021; 39(1): 65-74.
Li H., Xiao X., Zhang J., Zafara M.I., Wue C., Longet Y. et al. Impaired spermatogenesis in COVID-19 patients. E. Clinical Medicine. 2020; 28: 68-72.
Ma L., Xie W., Li D., Shi L., Mao Y., Xionget Y. al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. MedRxiv. 2020; е20037267-70.
Pan F., Xiao X., Guo J., Song Y., Li H., Patel D.P. et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil. Steril. 2020; 113(6): 1135-9.
Song C., Wang Y., Li W., Hu B., Chen G, Xia P. et al. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol. Reprod. 2020; 103(1): 4-6.
Li D., Jin M., Bao P., Zhao W., Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020; 3(5): e208292-4.
Vishvkarma R., Rajender S. Could SARS-CoV-2 affect male fertility? Andrologia. 2020; 52(9): e13712-7.