Список литературы
1. Laaksonen R., Ekroos K., Sysi-Aho M., Hilvo M., Vihervaara T., Kauhanen D. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary
syndromes beyond LDL-cholesterol. European Heart Journal. 2016; 37: 1967–76.
2. Chatham J.C., Young M.E. Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ. Res. 2012;111: 666-8.
3. Klevstig M., Ståhlman M., Lundqvist A., Scharin Täng M., Fogelstrand P. et al. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in thepost-ischemic heart. J. Mol. Cell. Cardiol. 2016;93:69-72.
4. Futerman A.H., Riezman H. The ins and outs of sphingolipid synthesis. Trends Cell Biol. 2005;15(6):312–8.
5. Perry R.J, Ridgway N.D. Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta. 2005;1734(3):220–34.
6. Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017; 31(4):1263-72.
7. Aburasayn H., Al Batran R., Ussher J.R. Targeting ceramide metabolism in obesity. Am. J. Physiol. Endocrinol. Metab. 2016;311(2):423-35.
8. Tani M., Ito M., Igarashi Y. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal. 2007;19(2):229–37.
9. Novgorodov S.A., Gudz T.I. Ceramide and mitochondria in ischemia/reperfusion. J. Cardiovasc. Pharmacol. 2009; 53(3): 198–208.
10. Schissel S.L., Jiang X., Tweedie-Hardman J., Jeong T., Camejo E.H., Najib J. et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J. Biol. Chem. 1998;273(5):2738–46.
11. Pavoine C., Pecker F. Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc. Res. 2009;82(2):175-83.
12. Bartke, N., Hannun, Y.A. Bioactive sphingolipids: metabolism and function. J. Lipid. Res. 2009;50:91–6.
13. Podbielska M., Szulc Z.M., Kurowska E., Hogan E.L., Bielawski J., Bielawska A, et al. Cytokine-induced release of ceramide-enriched exosomes as a mediator of celldeath signaling in an oligodendroglioma cell line. J. Lipid. Res. 2016;57(11):2028-39.
14. Larsen P.J., Tennagels N. On ceramides, other sphingolipids and impaired glucose homeostasis. Mol. Metab. 2014; 3(3): 252–60.
15. Knapp M., Zendzian-Piotrowska M., Błachnio-Zabielska A., Zabielski P., Kurek K., Górski J. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic. Res. Cardiol. 2012;107:294.
16. Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim. Biophys. Acta. 2013; 1831: 203–12.
17. Kurek K., Piotrowska D.M., Wiesiołek-Kurek P., Chabowska A., Łukaszuk B., Żendzian-Piotrowska M. The role of sphingolipids in selected cardiovascular diseases. Postepy Hig. Med. Dosw. (Online). 2013;67:1018–26.
18. Meeusen J.W., Donato L.J., Bryant S.C., Baudhuin L.M., Berger P.B., Jaffe A.S. Plasma Ceramides. A novel predictor of major adverse cardiovascular events after coronary angiography. Arterioscler.
Thromb. Vasc. Biol. 2018;38(8):1933-9.
19. de Carvalho L.P., Tan S.H., Ow G.S., Tang Z., Ching J., Kovalik J.P., et al. Plasma ceramides as prognostic biomarkers and their arterial and myocardial tissue correlates in acute myocardial infarction. JACC Basic. Transl. Sci. 2018; 3(2): 163–75.
20. Cordis G.A., Yoshida T., Das D.K. HPTLC analysis of sphingomyelin, ceramide and sphingosine in ischemic/reperfused rat heart. J. Pharm. Biomed. Anal. 1998;16:1189–93.
21. Zhang D.X., Fryer R.M., Hsu A.K., Zou A.P., Gross G.J., Campbell W.B. et al. Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic. Res. Cardiol.
2001;96(3):267–74.
22. Borodzicz S., Czarzasta K., Kuch M., Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis. 2015; 14:55.
23. Der P., Cui J., Das D.K. Role of lipid rafts in ceramide and nitric oxide signaling in the ischemic and preconditioned hearts. J. Mol. Cell. Cardiol. 2006; 40(2):313–20.
24. Cui J., Engelman R.M., Maulik N., Das D.K. Role of ceramide in ischemic preconditioning. J. Am. Coll. Surg. 2004;198(5):770–7.
25. Spijkers L.J.A., Janssen B.J.A., Nelissen J., Meens M.J., Wijesinghe D., Chalfant C.E. et al. Antihypertensive treatment differentially affects vascular sphingolipid biology in spontaneously hypertensive rats. PLoS ONE. 2011;6:e29222.
26. Feletou M., Verbeuren T.J., Vanhoutte P.M. Endothelium-dependent contractions in SHR: a tale of prostanoid TP and IP receptors. Br. J. Pharmacol. 2009; 156:563–74.
27. Fryer R.M., Muthukumarana A., Harrison P.C., Nodop M.S., Chen R.R., Harrington KE, et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P1) and hypertension (S1P3) in rat. PLoS ONE. 2012;7:e52985.
28. Czarny M., Schnitzer J.E. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am. J. Physiol. Heart Circ. Physiol. 2004;287:1344–52.
29. Auge N., Andrieu N., Negre-Salvayre A., Thiers J.C., Levade T., Salvayre R. The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J. Biol. Chem. 1996;271:19251–5.
30. Tabas I. Secretory sphingomyelinase. Chem. Phys. Lipids. 1999;102(1–2):123–30.
31. Jiang X.C., Paultre F., Pearson T.A. et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2000;20:2614–8.
32. Schissel S.L., Tweedie-Hardman J., Rapp J.H., Graham G., Williams K.J.,Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 1996;98:1455–64.
33. Li Z., Basterr M.J., Hailemariam T.K., Hojjati M.R., Lu S., Liu J. et al. The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim. Biophys. Acta. 2005;1735:130–4.
34. Bismuth J., Peter Lin, Qizhi Yao, Changyi Chen Ceramide: A common pathway for atherosclerosis? Atherosclerosis. 2008;196:497–504.
35. Caretti A., Torelli R., Perdoni F., Falleni M., Tosi D., Zulueta A. et al. Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against A. fumigatus airways infection. Biochim. Biophys. Acta. 2016;1860(6):1089-97.
36. Park T.S., Panek R.L., Mueller S.B., Hanselman J.C., Rosebury W.S., Robertson A.W. et al. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation. 2004;110:3465–71.
37. Hojjati M.R., Li Z., Zhou H., Tang S., Huan C., Ooi E., et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 2005;280:10284–9.
38. Gruzdeva O., Uchasova E., Dyleva Y., Akbasheva O., Karetnikova V., Shilov A. et al. Effect of different doses of statins on the development of type 2 diabetes mellitus in patients with myocardial infarction. Diabetes Metab. Syndr. Obes. 2017;10: 481–9.
39. Ng T.W.K., Esther M.M.O., Watts G.F., Chan D.C., Weir J.M., Peter J. et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome.
J. Clin. Endocrino.l Metab. 2014;99(11):2335–40.
40. Xia J.Y., Morley T.S., Scherer P.E. The adipokine/ceramide axis: Key Aspects of Insulin Sensitization. Biochimie. 2014; 96: 130-9.