Аннотация
Глиомы являются наиболее распространенными первичными опухолями центральной нервной системы, которые чрезвычайно агрессивны и имеют неутешительный прогноз. Инвазивная диагностика глиальных опухолей несет значительные риски
для пациента и не всегда целесообразна, а магнитно-резонансная томография не дает возможности дифференциальной
диагностики заболевания. В связи с этим активно развивается направление малоинвазивной диагностики глиом. Целью настоящего обзора стала систематизация имеющихся данных о циркулирующих биомаркерах глиом для потенциального клинического применения. Поиск литературы за последние 10 лет был проведен по ключевым словам «glioma liquid biomarkers»
с использованием баз данных PubMed, Elsevier, Российской научной электронной библиотеки eLIBRARY и поисковой системы
Google Scholar. Было выявлено более 5000 ссылок, после их проверки проанализировано 277 статей, из которых 62 источника были выбраны для написания настоящего обзора. Согласно литературным данным идентификация потенциальных
циркулирующих биомаркеров глиом, включая опухолевые клетки, внеклеточные везикулы, протеины, а также ДНК и РНК,
проводится в основном в крови и спинномозговой жидкости. Чувствительность и специфичность отдельных биомаркеров
характеризуется высокой вариабельностью. Среди наиболее перспективных выделяют отдельные микро-РНК, экзосомы и
внеклеточную ДНК. Проблема низких концентраций биомаркеров решается благодаря быстрому развитию методологической базы. Несомненным преимуществом жидкостной биопсии является возможность многократного отбора образцов,
что позволяет осуществлять мониторинг заболевания. Тем не менее, на сегодняшний день ни один маркер глиом не внедрен в
повседневную клиническую практику. Возможно, что панели нескольких типов биомаркеров станут в будущем стандартом
диагностики и мониторинга глиом, поскольку биомаркеры, задействованные в различных молекулярных онко-ассоциированных путях, будут актуальны для большего количества пациентов, а также смогут суммарно повысить чувствительность
и специфичность тестирования.
Annotation
Gliomas are the most common primary tumors of the central nervous system, which are extremely aggressive and have a poor prognosis.
Invasive diagnosis of glial tumors is not always advisable and carries signifi cant risks for the patient, and magnetic resonance imaging
does not allow diff erential diagnosis of the disease. Therefore, the direction of minimally invasive diagnosis of gliomas is actively
developing. The purpose of this review was to systematize the available data on circulating glioma biomarkers for potential clinical
application. A literature search over the last 10 years was carried out using the keywords “glioma liquid biomarkers” using the
PubMed and Elsevier databases, the Russian Scientifi c Electronic Library eLIBRARY and the Google Scholar search engine. More
than 5000 references were identifi ed, and after verifying, 277 articles were analyzed, of which 62 sources were selected for this
review. According to the literature, the identifi cation of potential circulating glioma biomarkers, including tumor cells, extracellular
vesicles, proteins, as well as DNA and RNA, is mainly performed in the blood and cerebrospinal fl uid. The sensitivity and specifi city of
individual biomarkers are characterized by high variability; individual microRNAs, exosomes, and extracellular DNA are considered
more promising. The problem of low concentrations of biomarkers is being solved due to the rapid development of the methodological
framework. An undoubted advantage of liquid biopsy is the possibility of multiple sampling, which allows for disease monitoring.
However, to date, no glioma marker has been introduced into everyday clinical practice. It is possible that panels of several types of
biomarkers will become the future standard for diagnosing and monitoring gliomas, since biomarkers involved in diff erent molecular
cancer-associated pathways will be relevant for a larger number of patients and can also cumulatively increase the sensitivity and
specifi city of testing.
Key words: glioma; circulating biomarkers; circulating tumor cells; extracellular vesicles; ctDNA; ctRNA; review
Список литературы
Л И Т Е Р А Т У Р А ( П П . 1 , 4 — 4 9 , 5 1 , 5 3 — 6 2 С М .
R E F E R E N C E S )
2. Кузнецова Н.С., Гурова С.В., Гончарова А.С., Заикина Е.В., Гусарева М.А., Зинькович М.С. Современные подходы к терапии глиобластомы. Южно-Российский онкологический журнал. 2023; 4(1):
52–64. DOI: 10.37748/2686-9039-2023-4-1-6.
3. Кит О.И., Водолажский Д.И., Росторгуев Э.Е., Франциянц Е.М.,
Панина С.Б. Молекулярно-генетические маркеры глиом. Молекулярная генетика, микробиология и вирусология. 2017; 35(4): 132–
40. DOI: 10.18821/0208-0613-2017-35-4-132–140.
51. Пушкин А.А., Гвалдин Д.Ю., Тимошкина Н.Н., Росторгуев Э.Е.,
Владимирова Л.Ю., Дженкова Е.А. Анализ данных высокопроизводительного секвенирования базы Gene Expression Omnibus для
идентификации микрорибонуклеиновых кислот в плазме крови
пациентов с глиобластомой. Res. Pract. Med. J. 2022; 9(1): 54–64.
DOI: 10.17709/2410-1893-2022-9-1-5.
52. Аллилуев И.А., Пушкин А.А., Кузнецова Н.С., Кавицкий С.Э.,
Росторгуев Э.Е. Оценка диагностической значимости циркулирующих микроРНК в плазме крови пациентов с глиомами высокой
степени злокачественности. Современные проблемы науки и образования. 2020; 6: 135. DOI: 10.17513/spno.30309.
REFERENCES
1. Müller Bark J., Kulasinghe A., Chua B., Day B.W., Punyadeera C.
Circulating biomarkers in patients with glioblastoma. Br. J. Cancer.
2020; 122(3): 295–305. DOI: 10.1038/s41416-019-0603-6.
2. Kuznetsova N.S., Gurova S.V., Goncharova A.S., Zaikina E.V., Gusareva M.A., Zinkovich M.S. Modern approaches to glioblastoma therapy. Yuzhno-Rossiyskiy onkologiheskiy zhurnal. 2023; 4(1): 52–64.
DOI: 10.37748/2686-9039-2023-4-1-6. (in Russian)
3. Kit O.I., Vodolazhskiy D.I., Rostorguyev E.Ye., Frantsiyants Ye.M.,
Panina S.B. Molecular genetic markers of gliomas. Molekulyarnaya
genetika, mikrobiologiya i virusologiya. 2017; 35(4): 132–40. DOI
10.18821/0208-0613-2017-35-4-132–140. (in Russian)
4. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., FigarellaBranger D. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021; 23(8): 1231–51.
DOI: 10.1093/neuonc/noab106.
5. Pasqualetti F., Rizzo M., Franceschi S., Lessi F., Paiar F., Buffa F.M.
New perspectives in liquid biopsy for glioma patients. Curr. Opin.
Oncol. 2022; 34(6): 705–12. DOI: 10.1097/CCO.0000000000000902.
6. Díaz Méndez A.B., Tremante E., Regazzo G., Brandner S., Rizzo
M.G. Time to focus on circulating nucleic acids for diagnosis and
monitoring of gliomas: a systematic review of their role as biomarkers. Neuropathol. Appl. Neurobiol. 2021; 47(4): 471–87. DOI:
10.1111/nan.12691.
7. Mathios D., Phallen J. Circulating biomarkers in glioblastoma:
ready for prime time? J. Cancer. 2021; 27(5): 404–9. DOI: 10.1097/
PPO.0000000000000541.
8. Van Der Pol Y., Mouliere F. Toward the early detection of cancer
by decoding the epigenetic and environmental fingerprints of cellfree DNA. Cancer Cell. 2019; 36(4): 350–68. DOI: 10.1016/j.
ccell.2019.09.003.
9. Miller A.M., Shah R.H., Pentsova E.I., Pourmaleki M., Briggs S., Distefano N. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019; 565(7741): 654–8. DOI:
10.1038/s41586-019-0882-3.
10. Quinones A., Le A. The multifaceted glioblastoma: From genomic alterations to metabolic adaptations. Adv. Exp. Med. Biol. 2021; 1311:
59–76. DOI: 10.1007/978-3-030-65768-0_4.
11. Hickman R.A., Miller A.M., Arcila M.E. Cerebrospinal fluid: A
unique source of circulating tumor DNA with broad clinical applications. Transl. Oncol. 2023; 33: 101688. DOI: 10.1016/j.tranon.2023.101688.
12. Le Rhun E., Seoane J., Salzet M., Soffietti R., Weller M. Liquid biopsies for diagnosing and monitoring primary tumors of the central
nervous system. Cancer Lett. 2020; 480: 24–8. DOI: 10.1016/j.canlet.2020.03.021.
13. Kitano Y., Aoki K., Ohka F., Yamazaki S., Motomura K., Tanahashi K.
et al. Urinary microRNA-based diagnostic model for central nervous
system tumors using nanowire scaffolds. ACS Appl. Mater. Interfaces.
2021; 13(15): 17316–29. DOI: 10.1021/acsami.1c01754.
14. Tamai S., Ichinose T., Nakada M. Liquid biomarkers in glioma. Brain
Tumor Pathol. 2023; 40(2): 66-77. DOI: 10.1007/s10014-023-
00452-x.
15. Birkó Z., Nagy B., Klekner Á., Virga J. Benefits of liquid biopsy. Int.
J. Mol. Sci. 2020; 21(20): 7522. DOI: 10.3390/ijms21207522.
16. Mathios D., Srivastava S., Kim T., Bettegowda C., Lim M. Emerging technologies for non-invasive monitoring of treatment response to
immunotherapy for brain tumors. Neuromolecular Med. 2022; 24(2):
74–87. DOI: 10.1007/s12017-021-08677-9.
17. Nevel K. Circulating Tumor Cells and Cell-free Tumor DNA in
Evaluation and Management of Gliomas: Current Evidence and
Potential Future Clinical Use. Adv. Oncol. 2022; 2(1): 129-38. DOI:
10.1016/j.yao.2022.01.006.
18. Del Bene M., Osti D., Faletti S., Beznoussenko G.V., DiMeco F.,
Pelicci G. Extracellular vesicles: The key for precision medicine in
glioblastoma. Neuro Oncol. 2022; 24(2): 184–96. DOI: 10.1093/
neuonc/noab229.
19. Hutóczki G., Virga J., Birkó Z., Klekner A. Novel concepts of glioblastoma therapy concerning its heterogeneity. Int. J. Mol. Sci. 2021;
22(18): 10005. DOI: 10.3390/ijms221810005.
20. Klekner Á., Szivos L., Virga J., Árkosy P., Bognár L., Birkó Z. et al.
Significance of liquid biopsy in glioblastoma–A review. J. Biotechnol.
2019; 298: 82–7. DOI: 10.1016/j.jbiotec.2019.04.011.
21. Morad G., Carman C.V., Hagedorn E.J., Perlin J.R., Zon L.I.,
Mustafaoglu N. et al. Tumor-derived extracellular vesicles breach the
intact blood–brain barrier via transcytosis. ACS Nano. 2019; 13(12):
13853–65. DOI: 10.1021/acsnano.9b04397.
22. Fraser K., Jo A., Giedt J., Vinegoni C., Yang K.S., Peruzzi P. et al.
Characterization of single microvesicles in plasma from glioblastoma
patients. Neuro Oncol. 2019; 21(5): 606–15. DOI: 10.1093/neuonc/
noy187.
23. Maire C.L., Fuh M.M., Kaulich K., Fita K.D., Stevic I., Heiland D.H.
et al. Genome-wide methylation profiling of glioblastoma cell-derived
extracellular vesicle DNA allows tumor classification. Neuro Oncol.
2021; 23(7): 1087–99. DOI: 10.1093/neuonc/noab012.
24. Jones J., Nguyen H., Drummond K., Morokoff, A. Circulating
biomarkers for glioma: a review. Neurosurgery. 2021; 88(3):
E221-E230. DOI: 10.1093/neuros/nyaa540.
25. Piccioni D.E., Achrol A.S., Kiedrowski L.A., Banks K.C., Boucher N.,
Barkhoudarian G. et al. Analysis of cell-free circulating tumor DNA
in 419 patients with glioblastoma and other primary brain tumors.
CNS Oncol. 2019; 8(2): CNS34. DOI: 10.2217/cns-2018-0015.
26. Orzan F., De Bacco F., Lazzarini E., Crisafulli G., Gasparini A.,
Dipasquale A. et al. Liquid biopsy of cerebrospinal fluid enables
selective profiling of glioma molecular subtypes at first clinical
presentation. Clin. Cancer Res. 2023; 29(7): 1252–66. DOI:
10.1158/1078-0432.CCR-22-2903.
27. Mair R., Mouliere F., Smith C.G., Chandrananda D., Gale D., Marass
F. et al. Measurement of plasma cell-free mitochondrial tumor DNA
improves detection of glioblastoma in patient-derived orthotopic
xenograft models. Cancer Res. 2019; 79(1): 220–30. DOI:
10.1158/0008-5472.CAN-18-0074.
28. Chen Y., Zhang J., Huang X., Zhou X., Hu J., Li G. et al. High
leukocyte mitochondrial DNA content contributes to poor prognosis
in glioma patients through its immunosuppressive effect. Br. J.
Cancer. 2015; 113(1): 99-106. DOI: 10.1038/bjc.2015.184.
29. Mair R., Mouliere F. Cell-free DNA technologies for the analysis
of brain cancer. Br. J. Cancer. 2022; 126(3): 371–8. DOI: 10.1038/
s41416-021-01594-5.
30. Jelski W., Mroczko B. Molecular and circulating biomarkers of
brain tumors. Int. J. Mol. Sci. 2021; 22(13): 7039. DOI: 10.3390/
ijms22137039.
31. Arcella A., Limanaqi F., Ferese R., Biagioni F., Oliva M.A., Storto M.
et al. Dissecting molecular features of gliomas: Genetic loci and validated biomarkers. Int. J. Mol Sci. 2020; 21(2): 685. DOI: 10.3390/
ijms21020685.
32. Liu G., Bu C., Guo G., Zhang Z., Sheng Z., Deng K. et al. Molecular and clonal evolution in vivo reveal a common pathway of distant
relapse gliomas. iScience. 2023; 26(9): 107528. DOI: 10.1016/j.
isci.2023.107528.
33. Wang Q., Hu B., Hu X., Kim H., Squatrito M., Scarpace L. et al. Tumor
evolution of glioma-intrinsic gene expression subtypes associates
with immunological changes in the microenvironment. Cancer Cell.
2017; 32(1): 42–56.e6. DOI: 10.1016/j.ccell.2017.06.003.
34. Palande V., Siegal T., Detroja R., Gorohovski A., Glass R., Flueh C. et
al. Detection of gene mutations and gene–gene fusions in circulating
cell‐free DNA of glioblastoma patients: an avenue for clinically
relevant diagnostic analysis. Mol. Oncol. 2022; 16(10): 2098–2114.
DOI: 10.1002/1878-0261.13157.
35. Okamura R., Piccioni D.E., Boichard A., Lee S., Jimenez R.E.,
Sicklick J.K. et al. High prevalence of clonal hematopoiesis‐type
genomic abnormalities in cell‐free DNA in invasive gliomas after
treatment. Int. J. Cancer. 2021; 148(11): 2839-47. DOI: 10.1002/
ijc.33481.
36. Billard P., Guerriau C., Carpentier C., Juillard F., Grandin N., Lomonte P. et al. The TeloDIAG: how telomeric parameters can help
in glioma rapid diagnosis and liquid biopsy approaches. Ann. Oncol.
2021; 32(12): 1608-17. DOI: 10.1016/j.annonc.2021.09.004.
37. Mio C., Damante G. Challenges in promoter methylation analysis in
the new era of translational oncology: a focus on liquid biopsy. Biochim. Biophys. Acta Mol. Basis Dis. 2022; 1868(6): 166390. DOI:
10.1016/j.bbadis.2022.166390.
38. Della Monica R., Cuomo M., Buonaiuto M., Costabile D., Franca
R.A., Del Basso De Caro M. et al. MGMT and whole-genome DNA
methylation impacts on diagnosis, prognosis and therapy of glioblastoma multiforme. Int. J. Mol. Sci. 2022; 23(13): 7148. DOI: 10.3390/
ijms23137148.
39. Sabedot T.S., Malta T.M., Snyder J., Nelson K., Wells M., DeCarvalho
A.C. et al. A serum-based DNA methylation assay provides accurate
detection of glioma. Neuro Oncol. 2021; 23(9): 1494–1508. DOI:
10.1093/neuonc/noab023.
40. Chen J., Huan W., Zuo H., Zhao L., Huang C., Liu X. et al. Alu
methylation serves as a biomarker for non-invasive diagnosis of
glioma. Oncotarget. 2016; 7(18): 26099-106. DOI: 10.18632/
oncotarget.8318.
41. Tuaeva N.O., Falzone L., Porozov Y.B., Nosyrev A.E., Trukhan
V.M., Kovatsi L. et al. Translational application of circulating DNA
in oncology: review of the last decades achievements. Cells. 2019;
8(10): 1251. DOI: 10.3390/cells8101251.
42. Dai L., Liu Z., Zhu Y., Ma L. Genome-wide methylation analysis
of circulating tumor DNA: A new biomarker for recurrent
glioblastom. Heliyon. 2023; 9(3): e14339. DOI: 10.1016/j.
heliyon.2023.e14339.
43. Swellam M., Bakr N.M., El Magdoub H.M., Hamza M.S., Ezz El
Arab L.R. Emerging role of miRNAs as liquid biopsy markers for
prediction of glioblastoma multiforme prognosis. J. Mol. Neurosci.
2021; 71(4): 836–44. DOI: 10.1007/s12031-020-01706-5.
44. Shrivastava R., Gandhi P., Gothalwal R. The road-map for establishment of a prognostic molecular marker panel in glioma using liquid
biopsy: current status and future directions. Clin. Transl. Oncol. 2022;
24(9): 1702–14. DOI: 10.1007/s12094-022-02833-8.
45. Gareev I., Ramirez M.D.J.E., Nurmukhametov R., Ivliev D., Shumadalova A., Ilyasova T. The role and clinical relevance of long noncoding RNAs in glioma. Noncoding RNA Res. 2023; 8(4): 562–70.
DOI: 10.1016/j.ncrna.2023.08.005.
46. Amer R.G., Ezz El Arab L.R., Abd El Ghany D., Saad A.S., BahieEldin N., Swellam, M. Prognostic utility of lncRNAs (LINC00565
and LINC00641) as molecular markers in glioblastoma multiforme
(GBM). J. Neurooncol. 2022; 158(3): 435–44. DOI: 10.1007/s11060-
022-04030-7.
47. Wu X., Shi M., Lian Y., Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front. Immunol. 2023; 14:
1039084. DOI: 10.3389/fimmu.2023.1039084.
48. Tang C., He X., Jia L., Zhang X. Circular RNAs in glioma: Molecular
functions and pathological implications. Noncoding RNA Res. 2023;
9(1) :105–15. DOI: 10.1016/j.ncrna.2023.10.007.
49. Ma C., Nguyen H.P., Luwor R.B., Stylli S.S., Gogos A., Paradiso L.
A comprehensive meta-analysis of circulation miRNAs in glioma as
potential diagnostic biomarker. PLoS One. 2018; 13(2): e0189452.
DOI: 10.1371/journal.pone.0189452.
50. Pushkin A.A., Gvaldin D.Ju., Timoshkina N.N., Rostorguev E.E.,
Vladimirova L.Ju., Dzhenkova, E.A. Аnalysis of Gene Expression
Omnibus high-throughput sequencing data for the determination of
microribonucleic acids in the blood plasma of patients with glioblastomas. Res. Pract. Med. J. 2022; 9(1): 54–64. DOI: 10.17709/2410-
1893-2022-9-1-5. (in Russian)
51. Zhou Q., Liu J., Quan J., Liu W., Tan H., Li W. MicroRNAs as
potential biomarkers for the diagnosis of glioma: A systematic review
and meta‐analysis. Cancer Sci. 2018; 109(9): 2651–9. DOI: 10.1111/
cas.13714.
52. Alliluev I.A., Pushkin A.A., Kuznetsova N.S., Kavitskiy S.Je.,
Rostorguev Ye.E. Estimation of the diagnostic significance of
circulating microRNAs in blood plasma of patients with high grade
gliomas. Sovremennye problemy nauki i obrazovaniya. 2020; 6: 135.
DOI: 10.17513/spno.30309. (in Russian)
53. Davidson C.L., Vengoji R., Jain M., Batra S.K., Shonka N. Biological,
diagnostic and therapeutic implications of exosomes in glioma.
Cancer Lett. 2024; 582: 216592. DOI: 10.1016/j.canlet.2023.216592.
54. Stella M., Falzone L., Caponnetto A., Gattuso G., Barbagallo C.,
Battaglia R. et al. Serum extracellular vesicle-derived circHIPK3 and
circSMARCA5 are two novel diagnostic biomarkers for glioblastoma
multiforme. Pharmaceuticals (Basel). 2021; 14(7): 618. DOI:
10.3390/ph14070618.
55. Li P., Xu Z., Liu T., Liu Q., Zhou H., Meng S. et al. Circular RNA
sequencing reveals serum exosome circular RNA panel for high-grade
astrocytoma diagnosis. Clin. Chem. 2022; 68(2): 332–43. DOI:
10.1093/clinchem/hvab254.
56. Sun J., Li B., Shu C., Ma Q., Wang, J. Functions and clinical significance of circular RNAs in glioma. Mol. Cancer. 2020; 19(1): 1–18.
DOI: 10.1186/s12943-019-1121-0.
57. Zhao M., Xu J., Zhong S., Liu Y., Xiao H., Geng L. et al. Expression profiles and potential functions of circular RNAs in extracellular
vesicles isolated from radioresistant glioma cells. Oncol. Rep. 2019;
41(3): 1893–1900. DOI: 10.3892/or.2019.6972.
58. Xia D., Gu X. Plasmatic exosome-derived circRNAs panel act as fingerprint for glioblastoma. Aging (Albany NY). 2021; 13(15): 19575–
86. DOI: 10.18632/aging.203368.
59. Saenz-Antoñanzas A., Auzmendi-Iriarte J., Carrasco-Garcia E.,
Moreno-Cugnon L., Ruiz I., Villanua J. et al. Liquid biopsy in glioblastoma: opportunities, applications and challenges. Cancers (Basel). 2019; 11(7): 950. DOI: 10.3390/cancers11070950.
60. Wang Y., Zhao D., Wang H., Wang S., Zhang H., Liu H. et al. Long
non-coding RNA-LINC00941 promotes the proliferation and invasiveness of glioma cells. Neurosci. Lett. 2023; 795: 136964. DOI:
10.1016/j.neulet.2022.136964.
61. Zhang Z., Yin J., Lu C., Wei Y., Zeng A., You Y. Exosomal transfer
of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J. Exp. Clin. Cancer. Res. 2019; 38(1):
1–16. DOI: 10.1186/s13046-019-1139-6.
62. Pienkowski T., Kowalczyk T., Kretowski A., Ciborowski M. A review
of gliomas-related proteins. Characteristics of potential biomarkers.
Am. J. Cancer. Res. 2021; 11(7): 3425–44. eCollection 2021.