Аннотация
Актуальность. В последнее время внимание исследователей привлекает возможность определения онкомаркеров в слюне
взамен традиционной сыворотке/плазме крови. Цель работы: анализ изменения концентрации онкомаркеров СА125, СА15-3,
СА 27.29 и MCA в слюне при РМЖ с учетом экспрессии рецептора HER2, а также подбор оптимальных комбинаций онко-
маркеров с наибольшей диагностической чувствительностью и специфичностью.
Материал и методы. Проведено исследование на 165 добровольцах, разделенных на 2 группы: основная (рак молочной же-
лезы, n=110) и контрольная группа (условно здоровые, n=55). Выборка включала равное количество пациенток с разными
молекулярно-биологическими подтипами РМЖ. Для построения деревьев классификации использован метод полного пере-
бора для одномерных ветвлений CART.
Результаты. Установлено, что комбинация маркеров СА125, CA15-3, СА27.29 и MCA в слюне обладает диагностической
чувствительностью 92.73%, специфичностью 83.64% и общей точностью 89.70% при сравнении контрольной группы с
группой пациентов с РМЖ. Эта же комбинация позволяет с относительно высокой общей точностью выявить группу с
положительной экспрессией рецептора HER2: чувствительность 83.33%, специфичность 90.91%, общая точность 86.36%.
Назначение СА125, CA15-3, СА27.29 и MCA по отдельности показало свою неэффективность при первичной диагностике
РМЖ за счет большой доли ложноположительных результатов.
Заключение. Измерение в слюне перечисленной комбинации маркеров может помочь оптимизировать их использование в
рутинной диагностике пациентов с РМЖ и мониторинге за их состоянием.
Annotation
Background. Recently, the attention of researchers has been attracted by the possibility of determining tumor markers in saliva instead
of traditional serum/blood plasma. The aim of the work: to analyze changes in the concentration of tumor markers CA125, CA15-3, CA
27.29 and MCA in saliva in breast cancer, taking into account the expression of the HER2 receptor, as well as the selection of optimal
combinations of tumor markers with the highest diagnostic sensitivity and specificity.
Material and methods. The study was conducted on 165 volunteers divided into 2 groups: the main (breast cancer, n = 110) and the
control group (conditionally healthy, n = 55). The sample included an equal number of patients with different molecular biological
subtypes of breast cancer. To construct classification trees, the exhaustive search method for one-dimensional CART branches was
used.
Results. It was found that the combination of markers CA125, CA15-3, CA27.29 and MCA in saliva has a diagnostic sensitivity of
92.73%, specificity of 83.64% and overall accuracy of 89.70% when comparing the control group with the group of patients with
breast cancer. The same combination allows identifying the group with positive expression of the HER2 receptor with a relatively high
overall accuracy: sensitivity 83.33%, specificity 90.91%, and overall accuracy 86.36%. The appointment of CA125, CA15-3, CA27.29
and MCA separately showed its ineffectiveness in the primary diagnosis of breast cancer due to the large proportion of false positive
results.
Conclusion. Measuring the above combination of markers in saliva can help to optimize their use in routine diagnosis of patients with
breast cancer and monitoring their condition.
Key wоrds: saliva; breast cancer; tumor markers; CA125; CA 15-3; CA 27.29; MCA; diagnostic significance
Список литературы
Л И Т Е РАТ У РА ( П П . 2 — 7 , 9 — 4 2 С М . R E F E RENC
E S )
1. Тюляндин С.А., Артамонова Е.В., Жигулев А.Н., Жукова Л.Г.,
Королева И.А., Пароконная А.А. Практические рекомендации по
лекарственному лечению рака молочной железы. Практические
рекомендации RUSSCO. Злокачественные опухоли. 2023; 13 (1):
157–200. DOI: 10.18027/2224-5057-2023-13-3s2-1-157-200.
8. Семиглазов В.Ф., Семиглазов В.В., Дашян Г., Бессонов А., Пал-
туев Р., Семиглазова Т. М. и др. Опухолевые маркеры при раке
молочной железы. Врач. 2011; 12: 2-7.
R E F E R E NC E S
1. Tyulyandin S.A., Artamonova E.V., Zhigulev A.N., Zhukova L.G.,
Koroleva I.A., Parokonnaya A.A. Practical recommendations
for drug treatment of breast cancer. Practical recommendations
RUSSCO. Zlokachestvennye opukholi. 2023; 13 (1): 157–200. DOI:
10.18027/2224-5057-2023-13-3s2-1-157-200. (in Russian)
2. Heylen J., Punie K., Smeets A., Neven P., Weltens C., Laenen A.,
Wildiers H. Elevated CA 15.3 in Newly Diagnosed Breast Cancer: A
Retrospective Study. Clin. Breast. Cancer. 2022; 22 (6): 579-87. DOI:
10.1016/j.clbc.2022.04.007.
3. Di Gioia D., Blankenburg I., Nagel D., Heinemann V., Stieber P. Tumor
markers in the early detection of tumor recurrence in breast cancer
patients: CA 125, CYFRA 21-1, HER2 shed antigen, LDH and CRP in
combination with CEA and CA 15-3. Clin. Chim. Acta. 2016; 461: 1-7.
DOI: 10.1016/j.cca.2016.07.014.
4. Rack B., Schindlbeck C., Jückstock J., Genss E.M., Hepp P., Lorenz R.,
Tesch H., Schneeweiss A., Beckmann M.W., Lichtenegger W., Sommer
H., Friese K., Janni W. SUCCESS Study Group. Prevalence of
CA 27.29 in primary breast cancer patients before the start of systemic
treatment. Anticancer Res. 2010; 30 (5): 1837-41. DOI: 10.21873/
anticanres.11034.
5. Beveridge R. A. Review of clinical studies of CA 27.29 in breast
cancer management. Int. J. Biol. Markers. 1999; 14: 36-9. DOI:
10.1177/172460089901400107.
6. Aspeslet L., Ballok J., Mansbach L., Maimonis P. J. A technical and
clinical evaluation of 3 commercial MUC-1 breast cancer marker assays.
Tumor Biology. 1998; 19: 13.
7. Nicolini A., Tartarelli G., Carpi A., Metelli M. R., Ferrari P., Anselmi
L., Conte M., Berti P., Miccoli P. Intensive post-operative follow-up
of breast cancer patients with tumour markers: CEA, TPA or CA15.3
vs MCA and MCA-CA15.3 vs CEA-TPA-CA15.3 panel in the early
detection of distant metastases. BMC Cancer. 2006; 6: 269. DOI:
10.1186/1471-2407-6-269.
8. Semiglazov V.F., Semiglazov V.V., Dashyan G., Bessonov A., Paltuev
R., Semiglazova T. et al. Tumor markers in breast cancer. Vrach. 2011;
12: 2-7. (in Russian)
9. Dai X., Zhang X., Lu P. Toward a holistic view of multiscale breast
cancer molecular biomarkers. Biomark. 2019; 13 (17): 1509–33.
DOI: 10.2217/bmm-2019-0143.
10. Lau C.S., Wong D.T. Breast cancer exosome-like microvesicles and
salivary gland cells interplay alters salivary gland cell-derived exosome-
like microvesicles in vitro. PLoS One. 2012; 7 (3): e33037.
DOI: 10.1371/journal.pone.0033037.
11. Bishop J.A. Unmasking MASC: bringing to light the unique morphologic,
immunohistochemical and genetic features of the newly recognized
mammary analogue secretory carcinoma of salivary glands. Head. Neck.
Pathol. 2013; 7 (1): 35–9. DOI: 10.1007/s12105-013-0429-0.
12. Balatti V., Oghumu S., Bottoni A., Maharry K., Cascione L., Fadda
P., Parwani A., Croce C., Iwenofu O.H. MicroRNA profiling of salivary
duct carcinoma versus Her2/Neu overexpressing breast carcinoma
identify miR-10a as a putative breast related oncogene. Head. Neck.
Pathol. 2019; 13 (3): 344-54. DOI: 10.1007/s12105-013-0429-0.
13. Streckfus C.F., Bigler L. A catalogue of altered salivary proteins secondary
to invasive ductal carcinoma: a novel in vivo paradigm to assess
breast cancer progression. Scientific Reports. 2016; 6: 30800. DOI:
10.1038/srep30800.
14. López-Jornet P., Aznar C., Ceron J., Asta T. Salivary biomarkers in
breast cancer: a cross-sectional study. Support Care Cancer 2021; 29
(2): 889-96. DOI: 10.1007/s00520-020-05561-3.
15. Pink R., Simek J., Vondrakova J., Faber E., Michl P., Pazdera J., Indrak
K. Saliva as a diagnostic medium. Biomedical papers of the Medical
Faculty of the University Palacky, Olomouc, Czechoslovakia 2009;
153 (2): 103–10. DOI: 10.5507/bp.2009.017.
16. Assad D.X., Mascarenhas E.C.P., Normando A.G.C., Chardin H., Barra
G.B., Pratesi R. et al. Correlation between salivary and serum CA15-3
concentrations in patients with breast cancer. Mol. Clin. Oncol. 2020;
13 (2): 155-61. DOI: 10.3892/mco.2020.2062.
17. Streckfus C. Salivary biomarkers to assess breast cancer diagnosis
and progression: are we there yet? Saliva and salivary diagnostics.
IntechOpen. 2019. Available at: http://dx.doi.org /10.5772/
intechopen.85762 (Accessed: 30 September 2024).
18. Gion M., Mione R., Leon A.E., Dittadi R. Comparison of the diagnostic
accuracy of CA27.29 and CA15.3 in primary breast cancer. Clin.
Chem. 1999; 45: 630-7.
19. Houser S., Maimonis P. An analytical and clinical comparison of
ACS:180“ BR‘ with two other breast tumor marker assays. Clin. Chem.
1997; 43:1477.
20. Leon A., Mione R., Gion M. ACS:180 BR Assay: Evaluation in
primary breast cancer in comparison with CA 15.3. Tumor Biology.
1998; 19: 65.
21. Scholler N., Urban N. CA125 in ovarian cancer. Biomark. Med. 2007;
1(4): 513-23. DOI: 10.2217/17520363.1.4.513.
22. Teshima T.H., Ianez R.F, Coutinho-Camillo C.M., Buim M.E., Soares
F.A., Lourenço S.V. Development of human minor salivary glands: expression
of mucins according to stage of morphogenesis. J. Anat. 2011;
219(3): 410-7. DOI: 10.1111/j.1469-7580.2011.01405.x.
23. Davies J.R., Kirkham S., Svitacheva N., Thornton D.J., Carlstedt I.
MUC16 is produced in tracheal surface epithelium and submucosal
glands and is present in secretions from normal human airway and cultured
bronchial epithelial cells. Int. J. Biochem. Cell Biol. 2007; 39
(10): 1943-54. DOI: 10.1016/j.biocel.2007.05.013.
24. Woo H.J., Bae C.H., Song S.Y., Lee H.M., Kim Y.D. Expression of
membrane-bound mucins in human nasal mucosa: different patterns
for MUC4 and MUC16. Arch. Otolaryngol. Head Neck. Surg. 2010;
136(6): 603-9. DOI: 10.1001/archoto.2010.71.
25. Sengupta A., Valdramidou D., Huntley S., Hicks S.J., Carrington S.D.,
Corfield A.P. Distribution of MUC1 in the normal human oral cavity is
localized to the ducts of minor salivary glands. Arch. Oral. Biol. 2001;
46(6): 529-38. DOI: 10.1016/s0003-9969(01)00010-3.
26. Yan W., Apweiler R., Balgley B.M., Boontheung P., Bundy J.L., Cargile
B.J. et al. Systematic comparison of the human saliva and plasma
proteomes. Proteomics Clin. Appl. 2009; 3(1): 116-34. DOI: 10.1002/
prca.200800140.
27. Dyachenko E.I., Bel’skaya L.V. Salivary transmembrane mucins of the
MUC1 family (CA 15-3, CA 27.29, MCA) in reast cancer: The effect
of human epidermal growth factor receptor 2 (HER2). Cancers. 2024;
16(20): 3461. DOI: 10.3390/cancers16203461.
28. Pang Z., Dong X., Deng H., Wang C., Liao X., Liao C., Liao Y., Tian
W., Cheng J., Chen G., Yi H., Huang L. MUC1 triggers lineage plasticity
of Her2 positive mammary tumors. Oncogene. 2022; 41(22): 3064-
78. DOI: 10.1038/s41388-022-02320-y. 29. Kirouac D.C., Du J., Lahdenranta J., Onsum M.D., Nielsen U.B.,
Schoeberl B., McDonagh C.F. HER2+ cancer cell dependence on
PI3K vs. MAPK signaling Axes Is determined by expression of EGFR,
ERBB3 and CDKN1B. PLoS Comput .Biol. 2016; 12(4): e1004827.
DOI: 10.1371/journal.pcbi.1004827.
30. Pan L., Li J., Xu Q., Gao Z., Yang M., Wu X., Li X. HER2/PI3K/AKT
pathway in HER2-positive breast cancer: A review. Medicine (Baltimore).
2024; 103(24): e38508. DOI: 10.1097/MD.0000000000038508.
31. van den Ende N.S., Smid M., Timmermans A., van Brakel J.B.,
Hansum T., Foekens R., Trapman A.M.A.C., Heemskerk-Gerritsen
B.A.M., Jager A., Martens J.W.M., van Deurzen C.H.M. HER2-low
breast cancer shows a lower immune response compared to HER2-
negative cases. Sci. Rep. 2022; 12(1): 12974. DOI: 10.1038/s41598-
022-16898-6.
32. Amens J.N., Bahçecioglu G., Zorlutuna P. Immune System Effects on
Breast Cancer. Cell Mol. Bioeng. 2021; 14(4): 279-92. DOI: 10.1007/
s12195-021-00679-8.
33. Nath S., Mukherjee P. MUC1: A multifaceted oncoprotein with a key
role in cancer progression. Trends Mol. Med. 2014; 20: 332–42. DOI:
10.1016/j.molmed.2014.02.007.
34. Sheng Y. H., Triyana S., Wang R., Das I., Gerloff K., Florin T. H., Sutton
P., McGuckin M. A. MUC1 and MUC13 differentially regulate epithelial
inflammation in response to inflammatory and infectious stimuli.
Mucosal. Immunol. 2013; 6: 557-68. DOI: 10.1038/mi.2012.98.
35. Choi S., Park Y. S., Koga T., Treloar A., Kim K. C. TNF-α is a key
regulator of MUC1, an anti-inflammatory molecule, during airway
Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 2011;
44: 255-60. DOI: 10.1165/rcmb.2009-0323OC.
36. Li Y., Dinwiddie D. L., Harrod K. S., Jiang Y., Kim K. C. Anti-inflammatory
effect of MUC1 during respiratory syncytial virus infection of
lung epithelial cells in vitro. Am. J. Physiol. Lung .Cell Mol. Physiol.
2010; 298: L558-563. DOI: 10.1152/ajplung.00225.2009.
37. Altschuler Y., Kinlough C. L., Poland P. A., Bruns J. B., Apodaca G.,
Weisz O. A., Hughey R. P. Clathrin-mediated endocytosis of MUC1 is
modulated by its glycosylation state. Mol. Biol. Cell. 2000; 11: 819-31.
DOI: 10.1091/mbc.11.3.819.
38. Hollingsworth M. A., Swanson B. J. Mucins in cancer: protection and
control of the cell surface. Nat. Rev. Cancer. 2004; 4: 45-60. DOI:
10.1038/nrc1251.
39. Sheng Y.H., Triyana S., Wang R., Das I., Gerloff K., Florin T.H., Sutton
P., McGuckin M.A. MUC1 and MUC13 differentially regulate epithelial
inflammation in response to inflammatory and infectious stimuli.
Mucosal. Immunol. 2013; 6(3): 557-68. DOI: 10.1038/mi.2012.98.
40. Jonckheere N., Vincent A., Neve B., Van Seuningen I. Mucin expression,
epigenetic regulation and patient survival: A toolkit of prognostic
biomarkers in epithelial cancers. Biochim. Biophys. Acta Rev. Cancer.
2021; 1876(1): 188538. DOI: 10.1016/j.bbcan.2021.188538. 41. Wu Y.M., Nowack D.D., Omenn G.S., Haab B.B. Mucin glycosylation
is altered by pro-inflammatory signaling in pancreatic-cancer cells. J.
Proteome Res. 2009; 8(4): 1876-86. DOI: 10.1021/pr8008379.
42. Lou Y., Liao J., Shan W., Xu Z., Chen X., Guan J. Menopausal status
combined with serum CA125 level significantly predicted concurrent
endometrial cancer in women diagnosed with atypical endometrial hyperplasia
before surgery †. Diagnostics (Basel). 2021; 12(1): 6. DOI:
10.3390/diagnostics12010006.
43. Huang X., Lin H., Zhao Y., Wang P., Ying H., Zhang S., Liu L. MUC16
can Predict the Pregnancy Outcomes in Human and Intraperitoneal
Administration of MUC16 can Rescue Pregnancy Losses in Mouse
Models. Reprod. Sci. 2024; 31(8): 2354-70. DOI: 10.1007/s43032-
024-01550-7.