ЭКСПРЕСС-МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ МЕТАБОЛИЗМА В РОТОВОЙ ЖИДКОСТИ (ОБЗОР ЛИТЕРАТУРЫ)
ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
Поиск новых способов диагностики заболеваний различной этиологии и внедрение их в практическое здравоохранение остаётся одним из приоритетных направлений современной медицины. Среди известных методов анализа биологических жидкостей особое место занимают методы экспресс-диагностики различных патологических состояний по маркёрам, обнаруживаемым в ротовой жидкости (РЖ). В данной статье представлен критический обзор последних разработок отечественных и зарубежных исследователей (проанализировано 56 источников), касающихся как уже существующих и широко применяемых, так и находящихся на стадии разработки устройств. Обсуждаются перспективы использования РЖ в качестве диагностической среды, а также различные методы быстрого определения маркёров патологических состояний. Приведены основные принципы, преимущества и недостатки иммунохроматографических тестов, электрохимического, микрофлюидного анализа, изотермической амплификации и устройств на основе смартфонов для экспресс-диагностики различных маркеров в РЖ.
Об авторах
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ 443099, Самара, Россия д-р мед. наук, доц., зав. каф. мед. биологии, генетики и экологии ymyakisheva@yandex.ru
Список литературы
Wu G., Zaman M. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull. World Health Organ. 2012; 90: 914-20.
John A., Price C. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014; 35(3): 155-67.
Bandhakavi S., Stone M.D., Onsongo G. et al. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res. 2009; 8: 5590-600.
Khurshid Z., Zohaib S., Najeeb S. et al. Human saliva collection devices for proteomics: an update. Int. J. Mol. Sci. 2016; 17: 846.
Lee Yu-H., Wong D.T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009; 22(4): 241-8.
Lazaro A.S., Mussavira S., Bindhu O.S. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochemia Medica. 2015; 25(2): 177-92.
Thorn L., Hucklebridge F., Evans P., Clow A. The cortisol awakening response, seasonality, stress and arousal: a study of trait and state influences. Psychoneuroendocrinology. 2009; 34: 299-306.
Stalder T., Evans P., Hucklebridge F., Clow A. Associations between psychosocial state variables and the cortisol awakening response in a single case study. Psychoneuroendocrinology. 2009; 35: 209-14.
Farnaud S., Kosti O., Getting S., Renshaw D. Saliva: Physiology and diagnostic potential in health and disease. The Scientific World Journal. 2010; 10: 434-56.
Srivastava N., Nayak P.A., Rana S. Point of care — a novel approach to periodontal diagnosis — a review. J. Clin. Diagn. Res. 2017; 11(8). ZE01-06.
Malamud D. Saliva as a diagnostic fluid. Dent. Clin. N. Am. 2011. 55: 159-78.
Yamaguchi M., Tezuka Y., Takeda K., Shetty V. Disposable collection kit for rapid and reliable collection of saliva. Am. J. Hum. Biol. 2015; 27(5): 720-3.
Schramm W., Angulo G. B., Torres P.C., Burgess-Cassler A. A Simple saliva-based test for detecting antibodies to human immunodeficiency virus. Clin. Vaccine Immunol. 1999; 6(4): 577-80.
Robles T.F., Sharma R., Harrell L. et al. Saliva sampling method affects performance of a salivary α-amylase biosensor. Am. J. Hum. Biol. 2013; 25(6): 719-24.
Hodinka R. L., Nagashunmugam T., Malamud D. Detection of human immunodeficiency virus antibodies in oral fluids. Clin. Vaccine Immunol. 1998; 5(4): 419-26.
Murdock R.C., Shen L., Griffin D.K. et al. Optimization of a paper-based ELISA for a human performance biomarker. Anal. Chem. 2013; 85: 11634-42.
Johnson N., Ebersole J.L., Kryscio R.J. et al. Rapid assessment of salivary MMP-8 and periodontal disease using lateral flow immunoassay. Oral Dis. 2016; 22(7): 681-7.
Царев В.Н., Шестакова И.В., Балмасова И.П. и др. Опыт применения экспресс-теста для определения антител к вирусу иммунодефицита человека в ротовой жидкости. Стоматолог. 2008; 2: 14 — 8
Jyoti B., Devi P. Detection of human immunodeficiency virus using oral mucosal transudate by rapid test. Indian J. Sex. Transm. Dis. 2013; 34(2): 95-101.
Gaydos C.A., Solis M., Hsieh Y.H. et al. Use of tablet-based kiosks in the emergency department to guide patient HIV self-testing with a point-of-care oral fluid test. Int. J. STD AIDS. 2013; 24(9): 716-21.
Visseaux B., Larrouy L., Calin R. et al. Anti-hepatitis C virus antibody detection in oral fluid: influence of human immunodeficiency virus co-infection. J. Clin. Virol. 2013; 58(2): 385-90.
Walsh J.M. New technology and new initiatives in U.S. workplace testing. Forensic Sci. Int. 2008; 174(2-3): 120-4.
Kuwayama K., Miyaguchi H., Yamamuro T. et al. Effectiveness of saliva and fingerprints as alternative specimens to urine and blood in forensic drug testing. Drug. Test. Anal. 2016; 8(7): 644-51.
Pellicano R, Vanni E., Palmas F. et al. Diagnosis of Helicobacter pylori infection: validation of a commercial noninvasive salivary test against urea breathe test and serology. Minerva Gastroenterol. Dietol. 2001; 47(3): 111-6.
Jaspard M., Le Moal G., Saberan-Roncato M. et al. Finger-stick whole blood HIV-1/-2 home-use tests are more sensitive than oral fluid-based in-home HIV tests. PLoS One. 2014; 9(6): e101148.
Rakesh N., Shetty S., Sujatha S. et al. Assessment of the accuracy of whole blood/serum Point-of-care HIV three-dot test for oral fluid specimens. Curr. HIV Res. 2016; 14(4): 354-9.
Warrener L., Slibinskas R., Chua K.B. et al. A point-of-care test for measles diagnosis: detection of measles-specific IgM antibodies and viral nucleic acid. Bull. World Health Organ. 2011; 89(9): 675-82.
Old J.B., Schweers B. A., Boonlayangoor P.W., Reich K.A. Developmental validation of RSIDTM-Saliva: a lateral flow immunochromatographic strip test for the forensic detection of saliva. J. Forensic Sci. 2009; 54(4): 866-73.
Soong R.K., Bachand G.D., Neves H.P. et al. Powering an inorganic nanodevice with a biomolecular motor. Science. 2000; 290: 1555-8.
Du Y., Zhang W., Wang M.L. An on-chip disposable salivary glucose sensor for diabetes control. J. Diabetes Sci. Technol. 2016. 10(6): 1344-52.
Mishra S., Saadat D., Kwon O. et al. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics. Biosens. Bioelectron. 2016; 81: 181-97.
Wanklyn C., Burton D., Enston E. et al. Disposable screen-printed sensor for the electrochemical detection of delta-9-tetrahydrocannabinol in undiluted saliva. Chem. Cent. J. 2016; 10: eCollection 2016.
Aydin E.B., Aydin M., Sezginturk M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron. 2017; 97: 169-76.
Anderson K., Poulter B., Dudgeon J. et al. A Highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors (Basel). 2017; 17(8): pii: E1807.
Du Y., Zhang W., Wang M.L. An on-chip disposable salivary glucose sensor for diabetes control. J. Diabetes Sci. Technol. 2016; 10(6): 1344-52.
Dutta G., Nagarajan S., Lapidus L.J., Lillehoj P.B. Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosens Bioelectron. 2017; 92: 372-7.
Adornetto G., Fabiani L., Volpe G. et al. An electrochemical immunoassay for the screening of celiac disease in saliva samples. Anal. Bioanal. Chem. 2015; 407(23): 7189-96.
Gill P., Ghaemi A. Nucleic acid isothermal amplification technologies — a review. Nucleosides, Nucleotides and Nucleic Acids. 2008; 27: 224-43.
Liu C., Geva E., Mauk M. et al. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst. 2011; 136(10): 2069-76.
Chen Z., Zhu H., Malamud D. et al. A rapid, self-confirming assay for HIV: simultaneous detection of anti-HIV antibodies and viral RNA. J. AIDS Clin. Res. 2016; pii: 540.
Wang X., Yin F., Bi Y. et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J. Virol. Methods. 2016; 238: 86-93.
Chotiwan N., Brewster C.D., Magalhaes T. et al. Rapid and specific detection of Asian- and African-lineage Zika viruses. Sci Transl Med. 2017; 9(388): pii: eaag0538.
Mauk M.G., Song J., Bau H.H., Liu C. Point-of-care molecular test for Zika infection. Clin. Lab. Int. 2017; 41: 25-7.
Barbosa A.I., Reis N.M. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst. 2017; P. 142(6): 858-82.
Morbioli G.G., Mazzu-Nascimento T., Stockton A.M., Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) — a review. Analytica Chimica Acta. 2017; 970: 1-22.
Mou L., Jiang X. Materials for microfluidic immunoassays: a review. Adv. Healthc. Mater. 2017; 6(15): 1601403.
Dong T., Pires N.M.M. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors. Biosens. Bioelectron. 2017; 94: 321-7.
Pinto V., Sousa P., Catarino S.O., Correia-Neves M., Minas G. Microfluidic immunosensor for rapid and highly-sensitive salivary cortisol quantification. Biosens Bioelectron. 2017; 90: 308-13.
Guo L., Wang Y., Zheng Y., et al. Study on the potential application of salivary inorganic anions in clinical diagnosis by capillary electrophoresis coupled with contactless conductivity detection. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016; 1014: 70-4.
Zilberman Y., Sonkusale S.R. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens. Bioelectron. 2015; 67: 465-71.
Oncescu V., O’Dell D., Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab. Chip. 2013; 13(16): 3232-8.
Carrio A., Sampedro C., Sanchez-Lopez J.L. et al. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors (Basel). 2015; 15(11): 29569-93.
Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016; 75: 273-84.
Jung Y., Kim J., Awofeso O. et al. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Opt. 2015; 54(31): 9183-9.
Roda A., Guardigli M., Calabria D. et al. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst. 2014; 139(24): 6494-501.
Calabria D., Caliceti C., Zangheri M., et al. Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens. Bioelectron. 2017; 94: 124-30.