Список литературы
Вишневский А. Г., Андреев Е. М., Тимонин С. А. Смертность от болезней системы кровообращения и продолжительность жизни в России. Демографическое обозрение. 2016; 1 (3): 6-34.
Рекомендации ЕОК по ведению пациентов с острым инфарктом миокарда с подъемом сегмента ST 2017. Российский кардиологический журнал 2018; 23 (5): 103-58.
Yin X., Subramanian S., Hwang S.J., O’Donnell C.J., Fox C.S., Courchesne P. et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler. Thromb. Vasc Biol. 2014; 34: 939-45.
Klingenberg R., Aghlmandi S., Räber L., Gencer B., Nanchen D., Heg D. et al. Improved risk stratification of patients with acute coronary syndromes using a combination of hsTnT, NT-proBNP and hsCRP with the GRACE score. Eur. Heart J. Acute Cardiovasc. Care. 2018 Mar; 7 (2): 129-38.
Zethelius B., Berglund L., Sundstrom J., Ingelsson E., Basu S., Larsson A et al. Use of Multiple Biomarkers to Improve the Prediction of Death from Cardiovascular Causes. N. Engl. J Med. 2008; 358: 2107-16.
Demissei B. G., Cotter G., Prescott M. F., Felker G. M., Filippatos G., Greenberg B. H. et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. European Journal of Heart Failure. 2017; 19: 1001-10.
Sharma A., Hijazi Z., Andersson U., Al-Khatib S. M., Lopes R. D., Alexander J. H. et al. Use of biomarkers to predict specific causes of death in patients with atrial fibrillation insights From the ARISTOTLE trial. Circulation. 2018; 138: 1666-76.
Dowall S.D., Graham V.A., Fletcher T., Hewson R. Use and reliability of multiplex bead-based assays (Luminex) at Containment Level 4. Methods. 2019; 158: 17-21.
Overview of the xMAP Technology. Available at: https://www.luminexcorp.com/xmap-technology.
Lehrke M., Millington S.C., Lefterova M., Cumaranatunge R.G., Szapary P., Wilensky R., Rader D.J., Lazar M.A., Reilly M.P. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans.J. Am. Coll Cardiol. 2007; 49: 442-9.
Jansson A.M., Aukrust P., Ueland T., Smith C., Omland T., Hartford M., Caidahl K. Soluble CXCL16 predicts long-term mortality in acute coronary syndromes. Circulation. 2009; 119: 3181-8.
Sheikine Y., Bang C.S., Nilsson L., Samnegard A., Hamsten A., Jonasson L., Eriksson P., Sirsjo A. Decreased plasma CXCL16/SR-PSOX concentration is associated with coronary artery disease. Atherosclerosis. 2006; 188: 462-6.
Dahl C.P., Gullestad L., Fevang B., Holm A.M., Landrø L., Vinge L.E., Fiane A.E., Sandberg W.J. Increased expression of LIGHT/TNFSF14 and its receptors in experimental and clinical heart failure. Eur J Heart Fail. 2008 Apr; 10(4): 352-9.
Yuan X., Gu Y., Lai X., Gu Q. LIGHT is increased in patients with coronary disease and regulates inflammatory response and lipid metabolism in oxLDL-induced THP-1 macrophages. Biochem Biophys Res Commun. 2017 Aug; 490(3): 732-8.
Aggarwal B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003 Sep; 3(9): 745-56.
Kose M., Emet S., Akpinar T. S., Kocaaga M., Cakmak R., Akarsu M., Yuruyen G., Arman Y., Tuke, T. Serum endocan level and the severity of coronary artery disease: a pilot study. Angiology 2015; 66(8): 727-31.
Chong-Rong Qiu, Qiang Fu, Jian Sui, Qian Zhang, Peng Wei, Yan Wu, Ke Zhu, Yi Lu, Bing Zong. Serum endothelial cell-specific molecule 1 (Endocan) levels in patients with acute myocardial infarction and its clinical significance: a pilot study. Angiology. 2017; 68(4): 354-9.
Qiu C., Sui J., Zhang Q., Wei P., Wang P., Fu Q. Relationship of endothelial cell-specific molecule 1 level in stress hyperglycemia patients with acute ST-segment elevation myocardial infarction: a pilot study. Angiology. 2016; 67(9): 829-34.
Ковалева О. Н., Кочубей О. А. Онкостатин Миего роль в формировании сердечно-сосудистых заболеваний. Научные ведомости Белгородского государственного университета. Сер. Медицина. Фармация. 2014; 11 (182): 5-8
Hunter J. J., Chien K. R. Signaling pathway for cardiac hypertrophy and failure. New Engl. J. Med. 1999; 341:1276-83.
Tanaka M., Miyajima A. Oncostatin M, a multifunctional cytokine. Rev. Physiol. Biochem. Pharmacol. 2003; 1 (149): 39-52.
Nagata T., Kai H., Shibata R., Koga M., Yoshimura A., Imaizumi T. Oncostatin M, an interleukin-6 family cytokine, upregulates matrix metalloproteinase-9 through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cultured smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 588-93.
Li X., Zhang X., Wei L., Xia Y., Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clinical Laboratory. 2014; 60(1): 113-8.
Gruson D., Ferracin B., Ahn S.A., Rousseau M.F. Elevation of plasma oncostatin M in heart failure. Future Cardiol. 2017; 13(3): 219-27.
Ashcheulova T., Kochubiei O., Demydenko G., Gerasimchuk N., Maliy A. Oncostatin M, interleukin-6, glucometabolic parameters and lipid profile in hypertensive patients with prediabetes and type 2 diabetes mellitus. Rom J Diabetes Nutr Metab Dis. 2017; 24(4): 345-54.
Xie J., Zhu S., Dai Q., Lu J., Chen J., Li G., Wu H., Li R., Huang W., Xu B., Xu W. Oncostatin M was associated with thrombosis in patients with atrial fibrillation. Medicine. 2017; 96 (18): pe6806.