Аннотация
Установлено, что доля генов микроРНК, инактивируемых за счет метилирования регуляторных CpG-островков в несколько раз выше, чем генов, кодирующих белки, что повышает их привлекательность как перспективных маркеров онкологических заболеваний. Цель данной работы определить роль клиническую значимость метилирования 13 опухоль-ассоциированных генов микроРНК (MIR-124a-2, MIR-124a-3, MIR-125-B1, MIR-127, MIR-129-2, MIR-132, MIR-137, MIR-203a, MIR-34b/с, MIR-375, MIR-9-1, MIR-9-3, MIR-339) у 26 больных раком яичников. Уровень метилирования оценивали методом метил-специфичной ПЦР в реальном времени. Данные, полученные в первичных опухолях (26), в гистологически неизмененных тканях яичников (15) и в перитонеальных метастазах (19) сопоставляли c применением ряда статистических программ. Для всех 13 генов выявлено нарастание уровня метилирования при переходе от неизмененной ткани к первичным опухолям и далее от первичных опухолей к перитонеальным метастазам, причем у генов MIR-203а, MIR-375 и MIR-339 уровень метилирования в метастазах возрастал наиболее существенно (в 2 и более раза). Впервые отмечена корреляция, показывающая согласованность между повышением уровня метилирования в некоторых парах микроРНК, например, MIR-129-2 / MIR-132 (rs >0,7; p<0,0001), как в первичных опухолях, так и в метастазах. Анализ метилирования генов микроРНК в клинических образцах рака яичников показал связь наблюдаемых молекулярных изменений как с начальными стадиями опухолеобразования, так и с прогрессией и диссеминацией рака яичников, с наличием метастазов в большом сальнике и с появлением асцита. Выявленные зависимости углубляют понимание механизма перитонеального метастазирования и могут быть использованы для отбора новых диагностических и прогностических маркеров рака яичников.
Список литературы
Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012; 13(7):484-92.
Kunej T., Godnic I., Ferdin J., Horvat S., Dovc P., Calin G.A. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat. Res. 2011; 717(1-2):77-84.
Piletic K., Kunej T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016; 90(10):2405-19.
Брага Э.А., Фридман М.В., Кушлинский. Н.Е. Молекулярные механизмы в метастазировании рака яичников: ключевые гены и регуляторные микроРНК. Биохимия. 2017; 82 (5): 717-31
Deb B., Uddin A., Chakraborty S. miRNAs and ovarian cancer: An overview. J. Cell. Physiol. 2018; 233(5):3846-54.
Staicu C.E., Predescu D.V., Rusu C.M., Radu B.M., Cretoiu D., Suciu N., Crețoiu S.M., Voinea S.C. Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. Cells. 2020; 9(1):E169.
Schmid G., Notaro S., Reimer D., Abdel-Azim S., Duggan-Peer M., Holly J., Fiegl H. et al. Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer. 2016; 16:102.
Deng Y., Zhao F., Hui L., Li X., Zhang D., Lin W., Chen Z., Ning Y. Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J. Ovarian Res. 2017; 10(1):50.
Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H., eds. WHO Classification of Tumours of Female Reproductive Organs. (4th ed.). Lyon: IARC; 2014.
Loginov V.I., Dmitriev A.A., Senchenko V.N., Pronina I.V., Khodyrev D.S., Kudryavtseva A.V., Krasnov G.S., Gerashchenko G.V., Chashchina L.I., Kazubskaya T.P., Kondratieva T.T., Lerman M.I., Angeloni D., Braga E.A., Kashuba V.I. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLoS One. 2015; 10:e0123369.
Braga E.A., Loginov V.I., Burdennyi A.M., Filippova E.A., Pronina I.V., Kurevlev S.V., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Ermilova V.D., Kushlinskii N.E. Five Hypermethylated MicroRNA Genes as Potential Markers of Ovarian Cancer. Bull. Exp. Biol. Med. 2018; 164(3):351-5.
Pronina I.V., Loginov V.I., Burdennyi A.M., Fridman M.V., Senchenko V.N., Kazubskaya T.P., Kushlinskii N.E., Dmitriev A.A., Braga E.A. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 2017; 604:1-8.
Loginov V.I., Pronina I.V., Burdennyi A.M., Filippova E.A., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Khodyrev D.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 2018; 662:28-36.
van Hoesel A.Q., Sato Y., Elashoff D.A., Turner R.R., Giuliano A.E., Shamonki J.M., Kuppen P.J., van de Velde C.J., Hoon D.S. Assessment of DNA methylation status in early stages of breast cancer development. Br. J. Cancer. 2013; 108(10):2033-8.
Kim Y.W., Kim E.Y., Jeon D., Liu J.L., Kim H.S., Choi J.W., Ahn W.S. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug Des. Devel. Ther. 2014; 8:293-314.
Yuan L., Li S., Zhou Q., Wang D., Zou D., Shu J., Huang Y. MiR-124 inhibits invasion and induces apoptosis of ovarian cancer cells by targeting programmed cell death 6. Oncol. Lett. 2017; 14(6):7311-7.
Bi L., Yang Q., Yuan J., Miao Q., Duan L., Li F., Wang S. MicroRNA-127-3p acts as a tumor suppressor in epithelial ovarian cancer by regulating the BAG5 gene. Oncol. Rep. 2016; 36(5):2563-70.
Wang J., Ye C., Liu J., Hu Y. UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem. Biophys. Res. Commun. 2018; 501(4):1034-40.
Sun J., Cai X., Yung M.M., Zhou W., Li J., Zhang Y. et al. miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer. Oncogene. 2019; 38(4):564-80.
Liu H.Y., Zhang Y.Y., Zhu B.L., Feng F.Z., Zhang H.T., Yan H., Zhou B. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM. J. Ovarian Res. 2019; 12(1):60.