Список литературы
Злокачественные новообразования в России в 2019 году. (Заболеваемость и смертность). Доступно по адресу: https://www.demoscope.ru/weekly/2021/0889/biblio05.php
Kobayashi H., Ohno S., Sasaki Y., Matsuura M. Hereditary breast and ovarian cancer susceptibility genes (Review). Oncology reports. 2013. 30(3):1019-29.
Turner N., Tutt A., Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat.Rev. Cancer. 2004. 4(10): 814-9. https://doi.org/10.1038/nrc1457
Varol U., Kucukzeybek Y., Alacacioglu A., Somali I., Altun Z., Aktas S. et al. BRCA genes: BRCA 1 and BRCA 2. J.BUON. 2018; 23(4): 862-6.
Wendt C., Margolin S. Identifying breast cancer susceptibility genes — a review of the genetic background in familial breast cancer. Acta. Oncol. 2019. 58(2): 135-46. https://doi.org/10.1080/0284186X.2018.1529428
Lee E.G., Kang H.J., Lim M.C., Park B., Park S.J., Jung S.Y. et al. Different Patterns of Risk Reducing Decisions in Affected or Unaffected BRCA Pathogenic Variant Carriers. Cancer Res. Treat. 2019. 51(1): 280-8. https://doi.org/10.4143/crt.2018.079
Antoniou A., Pharoah P.D., Narod S., Risch H.A., Eyfjord J.E., Hopper J.L. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 2003. 72(5): 1117-30. https://doi.org/10.1086/375033
Shackelford D.B., Shaw R.J. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression. Nat.Rev.Cancer. 2009. 9(8): 563-75. https://doi.org/10.1038/nrc2676
Nakanishi C., Yamaguchi T., Iijima T., Saji S., Toi M., Mori T. et al. Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology. 2004. 67(5-6): 476-9. https://doi.org/10.1159/000082933
Macken W.L., Tischkowitz M., Lachlan K.L. PTEN Hamartoma tumor syndrome in childhood: A review of the clinical literature. Am. J. Med. Genet. C. Semin. Med. Genet. 2019. 181(4): 591-610. https://doi.org/10.1002/ajmg.c.31743
Yehia L., Ni Y., Feng F., Seyfi M., Sadler T., Frazier T.W. et al. Distinct Alterations in Tricarboxylic Acid Cycle Metabolites Associate with Cancer and Autism Phenotypes in Cowden Syndrome and Bannayan-Riley-Ruvalcaba Syndrome. Am. J. Hum. Genet. 2019. 105(4): 813-21. https://doi.org/10.1016/j.ajhg.2019.09.004
Corso G., Intra M., Trentin C., Veronesi P., Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Fam.Cancer. 2016. 15(2): 215-9. https://doi.org/10.1007/s10689-016-9869-5 PMID: 26759166.
Deng L., Zhu X., Sun Y., Wang J., Zhong X., Li J. et al. Prevalence and Prognostic Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients. Cancer Res. Treat. 2019. 51(1): 128-40. https://doi.org/10.4143/crt.2017.598
Schon K., Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res. Treat. 2018. 167 (2): 417-23. https://doi.org/10.1007/s10549-017-4531-y
Cipriano N.M. Jr, de Brito A.M., de Oliveira E.S., de Faria F.C., Lemos S., Rodrigues A.N. et al. Mutation screening of TP53, CHEK2 and BRCA genes in patients at high risk for hereditary breast and ovarian cancer (HBOC) in Brazil. Breast Cancer. 2019. 26(3): 397-405. https://doi.org/10.1007/s12282-018-00938-z
Lima Z.S., Ghadamzadeh M., Arashloo F.T., Amjad G., Ebadi M.R., Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J.Hematol.Oncol. 2019. 12(1): 38. https://doi.org/10.1186/s13045-019-0725-6
Tung N.M., Boughey J.C., Pierce L.J., Robson M.E., Bedrosian I., Dietz J.R. et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin.Oncol. 2020. 38(18): 2080-2106. https://doi.org/10.1200/JCO.20.00299
Seal S., Thompson D., Renwick A., Elliott A., Kelly P., Barfoot R. et al. Truncating mutations in the Fanconi anemia J gene BRIP1 arelow-penetrance breast cancer susceptibility alleles. Nat.Genet. 2006. 38(11): 1239-41. https://doi.org/10.1038/ng1902
Antoniou A.C., Casadei S., Heikkinen T., Barrowdale D., Pylkäs K., Roberts J. et al. Breast-cancer risk in families with mutations in PALB2. The New England Journal of Medicine. 2014. 371 (6): 497-506. https://doi.org/10.1056/NEJMoa1400382
Siołek M., Cybulski C., Gąsior-Perczak D., Kowalik A., Kozak-Klonowska B., Kowalska A. et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int. J. Cancer. 2015. 137(3): 548-52. https://doi.org/10.1002/ijc.29426
Sullivan M.R., Bernstein K.A. RAD-ical New Insights into RAD51 Regulation. Genes (Basel). 2018. 9(12): 629. https://doi.org/10.3390/genes9120629
Bian L., Meng Y., Zhang M., Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol. Cancer. 2019. 18(1): 169. https://doi.org/10.1186/s12943-019-1100-5
Pilié P.G., Gay C.M., Byers L.A., O’Connor M.J., Yap T.A. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin. Cancer Res. 2019. 25(13): 3759-71. https://doi.org/10.1158/1078-0432.CCR-18-0968
Luo Y., Ma J., Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int. J. Mol. Sci. 2020; 21(16): 5598. https://doi.org/10.3390/ijms21165598
Pérez-Amado C.J., Tovar H., Gómez-Romero L., Beltrán-Anaya F.O., Bautista-Piña V., Dominguez-Reyes C. et al. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front. Oncol. 2020; 10: 572954. https://doi.org/10.3389/fonc.2020.572954
Rai N.K., Panjwani G., Ghosh A.K., Haque R., Sharma L.K. Analysis of mitochondrial DNA copy number variation in blood and tissue samples of metastatic breast cancer patients (A pilot study). Biochem.Biophys. Rep. 2021. 26: 100931. https://doi.org/10.1016/j.bbrep.2021.100931
Шатова Ю.С., Чеботарева Е.А., Златник Е.Ю., Новикова И. А., Водолажский Д.И., Дженкова Е.А. Некоторые клинико-морфологические и молекулярно-генетические аспекты у пациенток с клиническими признаками наследственного рака молочной железы. Казанский медицинский журнал. 2018. 99(2): 224-9. https://doi.org/10.17816/KMJ2018-224
Michailidou K., Lindström S., Dennis J., Beesley J., Hui S., Kar S. et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017. 551(7678): 92-4.
Nielsen F.C., van Overeem H.T., Sørensen C.S. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat. Rev.Cancer. 2016. 16(9): 599-612.