Аннотация
Фактор роста нервов (nerve growth factor, NGF) относится к белкам семейства нейротрофинов и участвует в росте, пролиферации, а также регенерации нейронов. NGF является многофункциональной молекулой, поэтому её свойства, механизмы действия и влияния на различные ткани все ещё находятся в процессе исследования, что позволяет предлагать, изучать и развивать новые направления использования фактора роста нервов в медицине. При экзогенном введении NGF эффективен для заживления кожных и роговичных ран, а в комплексе со стволовыми клетками или другими факторами роста может быть использован для лечения повреждений периферических нервов (ППН) и спинного мозга. Интраназальный и внутрижелудочковый методы введения NGF позволяют успешно доставлять фактор роста нервов в центральную нервную систему в обход гематоэнцефалического барьера для улучшения когнитивных функций при лечении черепно-мозговых травм. NGF может быть использован в качестве маркера повреждения нервной ткани, определения степени нейродегенеративных нарушений, перспективного диагностического и/или прогностического биомаркера развития опухолей, а также представляет собой потенциальные терапевтические мишени для ингибирования роста и метастазирования раковых клеток. Антитела против NGF эффективны для ингибирования боли при остеоартрите умеренной и тяжёлой степени. Биоматериалы, содержащие NGF, обладают большим потенциалом в области лечения ППН. Актуальным подходом к регуляции системы NGF является создание низкомолекулярных миметиков фактора роста нервов, взаимодействующих с его рецепторами. Таким образом, применение NGF и препаратов, влияющих на его содержание и проявление действия, мониторинг его уровня в поврежденных тканях и биологических жидкостях организма является перспективным направлением в медицине, в частности, в неврологии, нейрохирургии, офтальмологии и онкологии, но полноценное внедрение использования фактора роста нервов в медицинскую практику требует времени, необходимого для подтверждения эффектов, полученных в ходе экспериментов и клинических испытаний
Список литературы
1. Yusupov F.A., Yuldashev A.A. Biomarkers of neurodegenerative diseases. Byulleten’ nauki i praktiki. 2021; 7(9):341-53.
DOI:10.33619/2414-2948/70/30. (in Russian)
2. Kotel`nikova S.A., Garibova T.L., Gudasheva T.A., Kraineva V.A., Voronina T.A. Study of neuropsychotropic properties of compound with neuroprotective activity of dimeric dipeptide mimetic of 4th loop human nerve growth factor, GC-2H. Farmakokinetika i farmakodinamika. 2016; 3:26-30. (in Russian)
3. Mravec B. Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Med. 2022; 11(4):903-21. DOI: 10.1002/cam4.4488.
4. Hondermarck H., Huang P.S., Wagner J.A. The nervous system: Orchestra conductor in cancer, regeneration, inflammation and immunity. FASEB Bioadv. 2021; 3(11):944-52. DOI: 10.1096/fba.2021-00080.
5. Testa G., Cattaneo A., Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol. Res. 2021; 169:105662. DOI: 10.1016/j. phrs.2021.105662.
6. Kuznik B.I., Davydov S.O., Landa I.V. Nerve growth factor and its role in norm and pathology. Uspekhi fiziologicheskikh nauk. 2019;50(4):64-80.
DOI: 10.1134/S0301179819040052. (in Russian)
7. Costa R.O., Perestrelo T., Almeida R.D. PROneurotrophins and CONSequences, Mol. Neurobiol. 2018; 55(4): 2934-51. DOI: 10.1007/s12035-017-0505-7.
8. Liu Z., Wu H., Huang S. Role of NGF and its receptors in wound healing (Review). Exp. Ther. Med. 2021; 21(6):599. DOI: 10.3892/ etm.2021.10031.
9. Qin X-Y, Wu H-T, Cao C., Loh, Y.P., Cheng Y. A meta-analysis of
peripheral blood nerve growth factor levels in patients with schizophrenia. Mol. Psychiatry. 2017; 22(9):1306-12. DOI: 10.1038/mp.2016.235.
10. Huang E. J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Ann. Rev. Neurosci. 2001; 24: 677-736. DOI:10.1146/annurev.neuro.24.1.677.
11. Nico B., Mangieri D., Benagiano V., Crivellato E., Ribatti D. Nervemgrowth factor as an angiogenic factor. Microvascular. Research. 2008; 75:135–41.
DOI: 10.1016/j.mvr.2007.07.004.
12. Su Y.-W., Zhou X.-F., Foster B.K., Grills B.L., Xu J., Xian C.J. Roles of neurotrophins in skeletal tissue formation and healing. J. Cell Physiol. 2018; 233(3):2133–45. DOI: 10.1002/jcp.25936.
13. Mavlikhanova A.A., Pavlov V.N., Yang B., Kataev V.A., Wang N., Agletdinov E.F. et al. Monosialoganglioside GM1: structure, anti-apoptotic properties and neuroprotection. Meditsinskiy vestnik Bashkortostana. 2018; 3(5):82-7. (in Russian)
14. Yuan B., Zhang W.-W. Effects of gangliosides on expressions of caspase-3 and NGF in rats with acute spinal cord injury. Eur. Rev. Med. Pharmacol. Sci. 2017; 21(24):5843-9. DOI: 10.26355/eurrev_201712_14033.
15. Kolter T. Ganglioside biochemistry. ISRN Biochem. 2012; 5:1–36. DOI: 10.5402/2012/506160.
16. Volkhina I.V., Butolin E.G., Danilova L.A. Prospects for the use of sialic acid metabolism indicators in medicine. Klinicheskaya Laboratornaya Diagnostika. 2021; 66(7): 389-95. DOI: 10.51620/0869-2084-2021-66-7-389-395. (in Russian)
17. Scott-Solomon E., Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol. Cell Neurosci. 2018; 91:25-33. doi: 10.1016/j.mcn.2018.03.013.
18. Fahnestock M., Shekari A. ProNGF and Neurodegeneration in Alzheimer’s Disease. Front Neurosci. 2019; 13:129. DOI: 10.3389/ fnins.2019.00129.
19. Vinnikov I.S. Prospects of NGF use in medicine. All-Russian Sci entific Forum of Students with International Participation «Student
Science — 2022». Forcipe, 2022; 5(3):102. (in Russian)
20. Allen S., Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin. Sci. (Lond). 2006; 110(2):175-91. DOI: 10.1042/CS20050161.
21. Chiaretti A., Genovese O., Riccardi R., Di Rocco C., Di Giuda D., Mariotti P. et al. Intraventricular nerve growth factor infusion:
a possible treatment for neurological deficits following hypoxic ischemic brain injury in infants. Neurol. Res. 2005; 27:741–6. DOI: 10.3390/brainsci3031013.
22. Mustafakulov M., Tukhtaeva S., Seit-Asan L., Murodova M., Mustafakulova N., Saatov T. The effect of NGF on indicators of the antioxidant system in rat brain tissue. Universum: Chemistry and Biology. 2021; 9:87.
23. Li R., Li D., Wu C., Ye L., Wu Y., Yuan Y. et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10(4):1649-77. DOI: 10.7150/thno.40919.
24. Wang L., Zhang D., Ren Y., Guo S., Li J., Ma S. et al. Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic
brain injury treatment. Mater. Today Bio. 2021; 13:100201. DOI:10.1016/j.mtbio.2021.100201.
25. Wu Y., Wang Z., Cai P., Jiang T., Li Y., Yuan Y. et al. Dual Delivery of bFGF- and NGF-Binding Coacervate Confers Neuroprotection by Promoting Neuronal Proliferation. Cell Physiol. Biochem. 2018; 47(3):948-56. DOI: 10.1159/000490139.
26. Hu X., Li R., Wu Y. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J. Cell Mol.
Med. 2020; 24(14):8166-78. DOI: 10.1111/jcmm.15478.
27. Kawasaki H., Goda M., Fukuhara S., Hashikawa-Hobara N., Zamami Y., Takatori S. Nerve growth factor (NGF) has an anti-tumor effects through perivascular innervation of neovessels in HT1080 fibrosarcoma and HepG2 hepatitis tumor in nude mice. J. Pharmacol.
Sci. 2019; 140(1):1-7. DOI: 10.1016/j.jphs.2019.02.011.
28. Gostynska N., Pannella M., Rocco M.L., Giardino L., Aloe L., Calzà L. The pleiotropic molecule NGF regulates the in vitro properties
of fibroblasts, keratinocytes, and endothelial cells: implications for wound healing. Am. J. Physiol. Cell Physiol. 2020; 318(2):360-71.
DOI: 10.1152/ajpcell.00180.2019.
29. Papadopoulos К., Besgen V., Sekundo W. Successful treatment of a pediatric neurotrophic keratopathy with cenegermin. Cornea. 2021;
40(4):516–518. DOI: 10.1097/ICO.0000000000002512.
30. Panova M.S., Panchenko A.S. Markers of damage to the central nervous system in children. The modern state of the problem. Pediatr. 2020; 11(3):93-9. DOI: 10.17816/PED11393-99. (in Russian)
31. Pivovarova L., Voznyuk I., Osipova I., Gogoleva E. Nerve growth factor and s100b in blood and cerebrospinal fluid as indicators of the severity of ischemic stroke. Medical academic journal. 2019; 19:34-5. DOI: 10.17816/MAJ191S134-35.
32. Wang L., Fan S., Zhao Z., Xu Q. Change of Levels of NGF, ACTH, and AVP in the Cerebrospinal Fluid after Decompressive Craniectomy of Craniocerebral Injury and Their Relationship with Communicating Hydrocephalus. Evid Based Complement. Alternat. Med. 2021; 2021:519904. DOI: 10.1155/2021/1519904.
33. Tsukurova L.A. Neuroprotective approach to optimization of therapeutic and corrective measures in children with autism spectrum
disorders. Zhurnal nevrologii i psikhiatrii. 2018; 5(2): 51-6. DOI: 10.17116/jnevro20181185251. (in Russian)
34. Pedre L.L., Fuentes N.P., Gonzalez L.A., McRae A., Sánchez T.S., Lescano L.B., González R.M. Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain research. 2002; 952:122-7. DOI: 10.1016/S0006-8993(02)03222-5.
35. Pentz R., Iulita M.F., Ducatenzeiler A., Videla L., Benejam B., Carmona‐Iragui M. et al. Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer’s disease: A paired CSF and plasma study. Alzheimers Dement. 2021; 17(4):605-17. DOI: 10.1002/alz.12229.
36. Turkmen B.A., Yazici E., Erdogan D.G., Suda M.A., Yazici A.B. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry. 2021; 21(1):562. DOI: 10.1186/s12888-021-03578-4.
37. Malashenkova I.K., Ushakov V.L., Zakharova N.V., Krynsky S.A., Ogurtsov D.P., Hailov N.A. et al. Neuroimmune aspects of schizophrenia with expressed negative symptoms: new markers for diagnosing disease phenotypes. Sovremennye tekhnologii v meditsine. 2021; 6:24-35. DOI: 10.17691/stm2021.13.6.03. (in Russian)
38. Sun Q., Tang D.-D., Yin E.-G., Wei L.-L., Chen P., Deng S.-P., Tu L.-L. Diagnostic Significance of Serum Levels of Nerve Growth
Factor and Brain Derived Neurotrophic Factor in Diabetic Peripher al Neuropathy. Med. Sci. Monit. 2018; 24:5943-50. DOI: 10.12659/ MSM.909449.
39. Lin H., Huang H., Yu W., Zhang S., Zhang Y. Nerve growth factor regulates liver cancer cell polarity and motility. Mol. Med. Rep. 2021; 23(4):288.
DOI: 10.3892/mmr.2021.11927.
40. Bradshaw R.A., Pundavela J., Biarc J., Chalkley R.J., Burlingame A.L., Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv. Biol. Regul. 2015; 58:16-27. DOI: 10.1016/j.jbior.2014.11.003.
41. Bruno F., Arcuri D., Vozzo F., Malvaso A., Montesanto A., Maletta R. Expression and Signaling Pathways of Nerve Growth Factor
(NGF) and Pro-NGF in Breast Cancer: A Systematic Review. Curr. Oncol. 2022 Oct 27; 29(11):8103-20. DOI: 10.3390/ curroncol29110640.
42. Kumar A., Raza K., Nag T.C., Srivastava A., Sehgal R. Localization and hypersecretion of nerve growth factor in breast phyllodes tumors: Evidence from a preliminary study. Cancer Rep. (Hoboken). 2021; 4(1):e1300. DOI: 10.1002/cnr2.1300.
43. Jiang J., Bai J., Qin T., Wang Z., Han L. NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. J. Cell Mol. Med. 2020; 24(10): 5901-10. DOI: 10.1111/jcmm.15265.
44. Wan C., Yan X., Hu B., Zhang X. Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel). 2022; 14(15):3722. DOI: 10.3390/cancers14153722.
45. Blondy S., Christou N., David V., Verdier M., Jauberteau M.-O., Mathonnet M., Perraud A. Neurotrophins and their involvement in digestive cancers. Cell Death. Dis. 2019; 10(2):123. DOI: 10.1038/s41419-019-1385-8.
46. Griffin N., Gao F., Jobling P., Oldmeadow C., Wills V., Walker M.M., Faulkner S., Hondermarck H. The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology. 2021; 53(4):470-7. DOI: 10.1016/j. pathol.2020.08.009.
47. Vinnikov I.S., Volkhina I.V. NGF in oncology. [Sbornik nauchnykh trudov III Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Sovremennye dostizheniya khimikobiologicheskikh nauk v profilakticheskoy i klinicheskoy meditsine». St. Petersburg; 2022:229-233. (in Russian)
48. Yaman I., Çobanoğlu D. A., Xie T., Ye Y., Amit M. Advances in understanding cancer-associated neurogenesis and its implications on the neuroimmune axis in cancer. Pharmacol. Ther. 2022; 239:108199. DOI: 10.1016/j.pharmthera.2022.108199.
49. Song H., Wu T., Yang X., Li Y., Ye Y., Li B. et al. Surface Modification with NGF-Loaded Chitosan/Heparin Nanoparticles for Improving Biocompatibility of Cardiovascular Stent. Stem. Cells Int. 2021; 2021:9941143. DOI: 10.1155/2021/9941143.
50. Liu C., Li X., Zhao Q., Xie Y., Yao X., Wang M., Cao F. Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. J. Mater. Sci. Mater. Med. 2021; 32(1):9. DOI: 10.1007/ s10856-020-06479-2.
51. Wu Q., Xiang Z., Ying Y., Huang Z., Tu Y., Chen M. et al. Nerve growth factor (NGF) with hypoxia response elements loaded by
adeno-associated virus (AAV) combined with neural stem cells improve the spinal cord injury recovery. Cell Death. Discov. 2021; 7(1):301.
DOI: 10.1038/s41420-021-00701-y.
52. Obeidat A.M., Donner A., Miller R.E. An update on targets for treating osteoarthritis pain: NGF and TRPV1. Curr. Treatm. Opt. Rheumatol. 2020; 6(3):129-45. DOI: 10.1007/s40674-020-00146-x.
53. Wise B.L., Seidel M.F., Lane N.E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 2021;
17(1):34-46. DOI: 10.1038/s41584-020-00528-4.
54. Liu P., Li S., Tang L. Nerve Growth Factor: A Potential TherapeuticTarget for Lung Diseases. Int. J. Mol. Sci. 2021; 22(17):9112.
DOI:10.3390/ijms22179112.
55. Krüttgen A., Schneider I., Weis J. The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol. 2006;16(4):304-10.
DOI:10.1111/j.1750-3639.2006.00037.x.
56. Molloy N.H., Read D.E., Gorman A.M. Nerve growth factor in cancer cell death and survival. Cancers (Basel). 2011; 3(1):10-30. DOI:
10.3390/cancers3010510.
57. Warrington R.J., Lewis K.E. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol. Immunother. 2011; 60(2):187-95. DOI: 10.1007/s00262-010-0934-x.
58. Sara S., Mohammad K., Nader S., Maryam I., Marzieh S., Elham J., Neda S. Using the NGF/IL-6 ratio as a reliable criterion to show the
beneficial effects of progesterone after experimental diffuse brain injury. Heliyon. 2020; 6(4):e03844. DOI: 10.1016/j.heliyon.2020.e03844.
59. Bjorling D.E., Beckman M., Clayton M.K., Wang Z.Y. Modulation of nerve growth factor in peripheral organs by estrogen and progesterone. Neuroscience. 2002; 110(1):155-67. DOI: 10.1016/s0306-4522(01)00568-1.
60. Zhao Y., Mao X., Wang H., Gan L., Zhang S., Gong P., Lin X. The influence of electronic acupuncture at a specific frequency in facilitating the passage of NGF through the blood-brain barrier and its effect on learning and memory in MCAO/R rats. J. Integr. Neurosci. 2022; 21(3):79. DOI: 10.31083/j.jin2103079.
61. Obianyo O., Ye K. Novel small molecule activators of the Trk family of receptor tyrosine kinases. Biochim. Biophys. Acta. 2013;1834(10):2213–8.
62. Seredenin S.B., Gudasheva T.A. The development of a pharmacologically active low-molecular mimetic of the nerve growth factor. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2015; 115(6):63‑70. DOI: 10.17116/jnevro20151156163-70. (in Russian)
63. Delniotis I., Leidinger B. A 10-year follow-up of asymptomatic Charcot hip joints caused by CIPA syndrome (congenital insensitivity to pain with anhidrosis) with failure of any surgical reconstructive treatment. J. Surg. Case Rep. 2019; 2019(5):rjz154. DOI: 10.1093/jscr/rjz154.
64. Minde J.K. Norrbottnian congenital insensitivity to pain. Acta Orthop. Suppl. 2006; 77(321):2-32