Список литературы
Титов В.Н. Метаболический синдром — переедание физиологичной пищи. Висцеральные жировые клетки, неэтерифицированные и свободные жирные кислоты. М.: ИНФРА-М; 2017
Wu Y.T., Prina A.M., Brayne C. The association between community environment and cognitive function: a systematic review. Soc. Psychiatry. Psychiatr. Epidemiol. 2015; 50 (3): 351-62.
Rossetti Y.C., Weiner M., Hynan L.S., Cullum C.M., Khera A., Lacritz L.H. Subclinical atherosclerosis and subsequent cognitive function. Atherosclerosis. 2015; 241 (1): 36-41.
Wu F., Guo Y., Zheng Y., Ma W., Kowal P., Chatterji S., Wang L. Social-Economic Status and Cognitive Performance among Chinese Aged 50 Years and Older. PLoS One. 2016; 11 (11): e0166986.
Миронов В.В. Современные философские проблемы естественных, технических и социально-гуманитарных наук. М.: Гардарики; 2006
Heeley N., Blouet C. Central Amino Acid Sensing in the Control of Feeding Behavior. Front Endocrinol. (Lausanne). 2016; 7: 148-56.
Weinstein G., Lutski M., Goldbourt U., Tanne D. C-reactive protein is related to future cognitive impairment and decline in elderly individuals with cardiovascular disease. Arch. Gerontol. Geriatr. 2017; 69: 31-7.
Khalesi S., Sharma S., Irwin C., Sun J. Dietary patterns, nutrition knowledge and lifestyle: associations with blood pressure in a sample of Australian adults (the Food BP study). J. Hum. Hypertens. 2016; 30 (10): 581-90.
Fam B.C., Morris M.J., Hansen M.J., Kebede M., Andrikopoulos S., Proietto J., Thorburn A.W. Modulation of central leptin sensitivity and energy balance in a rat model of diet-induced obesity. Diabetes. Obes. Metab. 2007; 9 (6): 840-52.
Buckman L.B., Thompson M.M., Lippert R.N., Blackwell T.S., Yull F.E., Ellacott K.L. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol. Metab. 2014; 4 (1): 58-63.
Титов В.Н. Биологическая функция трофологии (питания) и патогенез метаболического синдрома — физиологичного переедания. Филогенетическая теория общей патологии, лептин и адипонектин. Патологическая физиология и экспериментальная биология. 2014; 2: 68-79
Cho J., Koh Y., Han J., Kim D., Kim T., Kang H. Adiponectin mediates the additive effects of combining daily exercise with caloric restriction for treatment of non-alcoholic fatty liver. Int. J. Obes. (Lond.). 2016; 40 (11): 1760-7.
Cohen P., Spiegelman B.M. Cell biology of fat storage. Mol. Biol. Cell. 2016; 27 (16): 2523-7.
Акмурзина В.А., Петряйкина Е.Е., Савельев С.В., Селищева А.А. Профиль неэтерифицированных жирных кислот плазмы детей с разными сроками сахарного диабета I-го типа. Биомедицинская химия. 2016; 62 (2): 206-11
Belfort-DeAguiar R., Seo D., Naik S., Hwang J., Lacadie C., Schmidt C., Constable R.T., Sinha R., Sherwin R. Food image-induced brain activation is not diminished by insulin infusion. Int. J. Obes. (Lond.). 2016; 40 (11): 1679-86.
Landecker H. Food as exposure: Nutritional epigenetics and the new metabolism. Biosocieties. 2011; 6 (2): 167-94.
Le Bloch J., Leray V., Chetiveaux M., Freuchet B., Magot T., Krempf M. et al. Nicotinic acid decreases apolipoprotein B100-containing lipoprotein levels by reducing hepatic very low density lipoprotein secretion through a possible diacylglycerol acyltransferase 2 inhibition in obese dogs. J. Pharmacol. Exp. Ther. 2010; 334 (2): 583-9.
Tholstrup T., Høy C.E., Andersen L.N., Christensen R.D., Sandström B. Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? J. Am. Coll. Nutr. 2004; 23 (2): 169-76.
Слободин Т.А., Горева А.В. Когнитивный резерв: причины снижения и защитные механизмы. Международный неврологический журнал. 2012; 49 (3): 161-5
Nielsen T.S., Vendelbo M.H., Jessen N., Pedersen S.B., Jørgensen J.O., Lund S., Møller N. Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G (0)/G (1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J. Clin. Endocrinol. Metab. 2011; 96 (8): E1293-7.
Stine M., Ulven S.M., Leder L., Elind E., Ottestad I., Christensen J.J., Telle-Hansen V.H., et al. Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: a double-blind, randomised controlled trial. Br. J. Nutr. 2016; 116 (8): 1383-93.
Moon J.H., Lim S., Han J.W., Kim K.M., Choi S.H., Park K.S., Kim K.W., Jang H.C. Carotid intima-media thickness is associated with the progression of cognitive impairment in older adults. Stroke. 2015; 46 (4): 1024-30.
Nordestgaard B.G., Langsted A., Mora S., Kolovou G., Baum H. Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints-A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2016; 62 (7): 930-46.
Santana S.E., Cheung E. Go big or go fish: morphological specializations in carnivorous bats. Proc. Biol. Sci. 2016; 283 (1830).
Титов В.Н., Ариповский А.В., Щекотов В.В., Щекотова А.П., Кухарчук В.В. Олеиновые триглицериды пальмового и пальмитиновые триглицериды сливочного жира. Реакция пальмитирования, пальмитат кальция, магния, всасывание энтероцитами жирных кислот и микробиота толстого кишечника. Клиническая лабораторная диагностика. 2016; 61 (8): 452-61
Zaragoza С., Gomez-Guerrero C., Martin-Ventura J.L., Blanco-Colio L., Lavin B., Mallavia B., Tarin C., Mas S., Ortiz A., Egido J. Animal models of cardiovascular diseases. J. Biomed. Biotechnol. 2011: 497 841
Лизенко М.В., Регеранд Т.И., Бахирев А.М., Петровский В.И., Лизенко Е.И. Содержание основных липидных компонентов в липопротеинах сыворотки крови человека и некоторых видов животных. Журнал эволюционной биохимии и физиологии. 2007; 43 (2): 155-61
28, Harris W.S., von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev. Med. 2004; 39 (1): 212-20.
Peng X. Transgenic rabbit models for studying human cardiovascular diseases. Comp. Med. 2012; 62 (6): 472-9.
Quehenberger O., Dennis E.A. The human plasma lipidome. N. Engl. J. Med. 2011; 365: 1812-23.
Ramasamy I. Update on the molecular biology of dyslipidemias. Clin. Chim. Acta. 2016; 454: 143-85.
Jordan E., Kley S., Le N.A., Waldron M., Hoenig M. Dyslipidemia in obese cats. Domest. Anim. Endocrinol. 2008; 35 (3): 290-9.
Dmitriev L.F., Titov V.N. Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing. Res. Rev. 2010; 9 (2): 200-10.
Russell J.S., Proctor S.D. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc. Pathol. 2006; 15 (6): 318-30.
Tan K.W., Sun L.J., Goh K.K., Henry C.J. Lipid droplet size and emulsification on postprandial glycemia, insulinemia and lipidemia. Food.Funct. 2016; 7 (10): 4278-84.
Xenoulis P.G., Steiner J.M. Lipid metabolism and hyperlipidemia in dogs. Vet. J. 2010; 183 (1): 12-21.
Lassman M.E., McLaughlin T.M., Somers E.P., Stefanni A.C., Chen Z., Murphy B.A. A rapid method for cross-species quantitation of apolipoproteins A1, B48 and B100 in plasma by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid. Commun. Mass. Spectrom. 2012; 26 (2): 101-8.
Gusarova V., Seo J., Sullivan M.L., Watkins S.C., Brodsky J.L., Fisher E.A. Golgi-associated maturation of very low density lipoproteins involves conformational changes in apolipoprotein B, but is not dependent on apolipoprotein E. J. Biol. Chem. 2007; 282 (27): 19 453-62.
Yamashita S., Hirano K., Sakai N., Matsuzawa Y. Molecular biology and pathophysiological aspects of plasma cholesteryl ester transfer protein. Biochim. Biophys. Acta. 2000; 1529 (1-3): 257-75.
Титов В.Н., Амелюшкина В.А., Рожкова Т.А. Конформация апоВ-100 в филогенетически и функционально разных липопротеинах низкой и очень низкой плотности. Алгоритм формирования фенотипов гиперлипопротеинемии. Клиническая лабораторная диагностика. 2014; 1: 27-36.
Сахаров В.Н., Литвицкий П.Ф. Роль различных фенотипов макрофагов в развитии заболеваний человека. Вестник Российской академии медицинских наук. 2015; 1: 26-31.
Zhao B., Song J., Chow WN, St Clair RW, Rudel LL, Ghosh S. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J. Clin. Invest. 2007; 117 (10): 2983-92