Список литературы
Лахтин М.В., Лахтин В.М., Афанасьев С.С., Алёшкин В.А. Новые гликоконъюгаты-распознающие системы в прогнозировании антиинфекционного интерактома человека. Здоровье и образование в XXI веке. 2015; 17 (4): 378-83.
Лахтин М.В., Лахтин В.М., Афанасьев С.С., Байракова А.Л., Алёшкин В.А., Афанасьев М.С. Кандидные маркёры болезней урогенитальных биотопов: реактивность к лектинам пробиотиков. Acta Biomedica Scientifica. 2018; 3 (1): 49-53.
Лахтин М.В., Лахтин В.М., Афанасьев С.С., Алёшкин В.А., Миронов А.Ю. Лектины и гликоконъюгаты в презентации антигенов и защите от патогенов (обзор литературы). Клиническая лабораторная диагностика. 2018; 10: 619-25.
Лахтин М.В., Лахтин В.М., Алёшкин В.А., Афанасьев М.С., Афанасьев С.С. Лектины в антираковых стратегиях. Acta Biomedica Scientifica. 2018; 3 (4): 69-77.
Bigley A.B., Rezvani K., Shah N., Sekine T., Balneger N., Pistillo M. et al. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin. Exp. Immunol. 2016; 185 (2): 239-51.
Chijioke O., Landtwing V., Münz C. NK Cell Influence on the Outcome of Primary Epstein-Barr Virus Infection. Front. Immunol. 2016; 7: 323
Crane C.A., Austgen K., Haberthur K., Hofmann C., Moyes K.W., Avanesyan L., et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl Acad. Sci. U S A. 2014; 111 (35): 12823-8.
Djaoud Z., Riou R., Gavlovsky P.J., Mehlal S., Bressollette C., Gérard N. et al. Cytomegalovirus-Infected Primary Endothelial Cells Trigger NKG2C+ Natural Killer Cells. J. Innate Immun. 2016; 8 (4): 374-85.
Djaoud Z., Guethlein L. A., Horowitz A., Azzi T., Nemat-Gorgani N., Olive D., Nadal D. et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and γδ T cells. J. Exp. Med. 2017; 214 (6): 1827-41.
Dukovska D., Fernández-Soto D., Valés-Gómez M., Reyburn H. T. NKG2H-Expressing T Cells Negatively Regulate Immune Responses. Front. Immunol. 2018; 9: 390.
Espinoza J.L., Nguyen V.H., Ichimura H., Pham T.T., Nguyen C.H., Pham T.V. et al. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers. Sci. Rep. 2016; 6: 39231.
Espinoza J.L., Minami M. Sensing Bacterial-Induced DNA Damaging Effects via Natural Killer Group 2 Member D Immune Receptor: From Dysbiosis to Autoimmunity and Carcinogenesis. Front. Immunol. 2018; 9: 52.
Fehniger T.A., Cooper M.A. Harnessing NK cell memory for cancer immunotherapy. Trends Immunol. 2016; 37(12):877-88.
Georgountzou A., Papadopoulos N.G. Postnatal Innate Immune Development: From Birth to Adulthood. Front. Immunol. 2017; 8: 957.
Grandi N., Cadeddu M., Pisano M.P., Esposito F., Blomberg J., Tramontano E. Identification of a novel HERV-K(HML10): Comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mob. DNA. 2017; 8: 15.
Hatfield S.D., Daniels K.A., O’Donnell C.L., Waggoner S.N., Welsh R.M. Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology. 519: 131-44.
Heiberg I.L., Pallett L.J., Winther T.N., Høgh B., Maini M.K., Peppa D. Defective natural killer cell anti-viral capacity in paediatric HBV infection. Clin. Exp. Immunol. 2015; 179 (3): 466-76.
Janelle V., Langlois M.P., Tarrab E., Lapierre P., Poliquin L., Lamarre A. Transient complement inhibition promotes a tumor-specific immune response through the implication of natural killer cells. Cancer Immunol. Res. 2014; 2 (3): 200-6.
Koltan S., Debski R., Koltan A., Grzesk E., Tejza B., Eljaszewicz A. et al. Phenotype of NK cells determined on the basis of selected immunological parameters in children treated due to acute lymphoblastic leukemia. Medicine (Baltimore). 2015; 94 (52): e2369.
Mahapatra S., Mace E.M., Minard C.G., Forbes L.R., Vargas-Hernandez A., Duryea T.K. et al. High-resolution phenotyping identifies NK cell subsets that distinguish healthy children from adults. 2017; 12 (8): e0181134.
Malone D.F.G., Lunemann S., Hengst J., Ljunggren H.G., Manns M.P., Sandberg J.K. et al. Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections. Front. Immunol. 2017; 8: 525.
Martinez D. R., Permar S. R., Fouda G. G. Contrasting Adult and Infant Immune Responses to HIV Infection and Vaccination. Clin. Vaccine Immunol. 2015; 23 (2): 84-94.
Muntasell A., Vilches C. Angulo A. López-Botet M. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction. Eur. J. Immunol. 2013; 43 (5): 1133-41.
Münz C. Epstein-Barr Virus-Specific Immune Control by Innate Lymphocytes. Front. Immunol. 2017; 8: 1658.
Muta T., Yoshihiro T., Jinnouchi F., Aoki K., Kochi Y., Shima T. et al. Expansion of NKG2C-expressing natural killer cells after umbilical cord blood transplantation in a patient with peripheral T-cell lymphoma with cytotoxic molecules. Intern. Med. 2018; 57 (6): 861-6.
Peled J. U., Jenq R. R. Not just leukemia: CMV may protect against lymphoma recurrence after allogeneic transplant. Leuk. Lymphoma. 2017; 58 (4): 759-61.
Peppa D. Natural killer cells in human immunodeficiency virus-1 infection: spotlight on the impact of human cytomegalovirus. Front. Immunol. 2017; 8: 1322.
Phan M.T., Chun S., Kim S.H., Ali A.K., Lee S.H., Kim S. et al. Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: Reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity. Hum. Immunol. 2017; 78 (2): 103-12.
Pupuleku A., Costa-García M., Farré D., Hengel H., Angulo A., Muntasell A. et al. Elusive Role of the CD94/NKG2C NK cell receptor in the response to cytomegalovirus: novel experimental observations in a reporter cell system. Front. Immunol. 2017; 8: 1317.
Sundström Y., Nilsson C., Lilja G., Kärre K., Troye-Blomberg M., Berg L. The expression of human natural killer cell receptors in early life. Scand. J. Immunol. 2007; 66 (2-3): 335-44.
Stojanovic A., Correia M.P., Cerwenka A. The NKG2D/NKG2DL Axis in the crosstalk between lymphoid and myeloid cells in health and disease. Front. Immunol. 2018; 9: 827.
Thompson T.W., Jackson B.T., Li P.J., Wang J., Kim A.B., Huang K.T.H. et al. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. Elife. 2018; 7. pii: e32919.
Uppendahl L.D., Dahl C.M., Miller J.S., Felices M., Geller M.A. Natural killer cell-based immunotherapy in gynecologic malignancy: a review. Front. Immunol. 2018; 8: 1825.
Walter L., Petersen B. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques — implications for highly complex MHC-dependent regulation of natural killer cells. Immunology. 2017; 150 (2): 139-45.
Wang Z., Guo L., Song Y., Zhang Y., Lin D., Hu B. et al. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D. 2017; 66 (4): 537-48.
Zingoni A., Molfetta R., Fionda C., Soriani A., Paolini R., Cippitelli M. et al. NKG2D and Its Ligands: «One for All, All for One». Front. Immunol. 2018; 9: 476.