Список литературы
Л И Т Е РАТ У РА ( П П . 1 — 3 , 7 — 5 0 С М .
R E F E R E NC E S )
4. Алиева А.М., Теплова Н.В., Батов М.А., Воронкова К.В., Валиев
Р.К., Шнахова Л.М. и др. Пентраксин-3 – перспективный биоло-
гический маркер при сердечной недостаточности: литературный
обзор. Consilium Medicum. 2022; 24 (1): 53-9. DOI: 10.26442/20751
753.2022.1.201382.
5. Алиева А.М., Резник Е.В., Пинчук Т.В., Аракелян Р.А., Вали-
ев Р.К., Рахаев А.М. и др. Фактор дифференцировки роста-15
(GDF-15) как биологический маркер при сердечной недостаточ-
ности. Архивъ внутренней медицины. 2023; 13 (1): 14-23. DOI:
10.20514/2226-6704-2023-13-1-14-23.
6. Алиева А.М., Теплова Н.В., Кисляков В.А., Воронкова К.В.,
Шнахова Л.М., Валиев Р.К. и др. Биомаркеры в кардиологии:
микроРНК и сердечная недостаточность. Терапия. 2022; 1: 60-70.
DOI:10.18565/therapy.2022.1.60-70.
R E F E R E NC E S
1. Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati
E., Baddour L.M. et al. Global Burden of Cardiovascular Diseases
and Risk Factors, 1990-2019: Update from the GBD 2019 Study.
J. Am. Coll. Cardiol. 2020; 76 (25): 2982-3021. DOI: 10.1016/j.
jacc.2020.11.010.
2. Deng P., Fu Y., Chen M., Wang D., Si L. Temporal trends in inequalities
of the burden of cardiovascular disease across 186 countries and
territories. Int. J. Equity Health. 2023; 22 (1): 164. DOI: 10.1186/
s12939-023-01988-2.
3. Silva S., Fatumo S., Nitsch D. Mendelian randomization studies on
coronary artery disease: a systematic review and meta-analysis. Syst.
Rev. 2024; 13 (1): 29. DOI: 10.1186/s13643-023-02442-8.
4. Alieva A.M., Teplova N.V., Batov M.A., Voronkova K.V., Valiev
R.K., Shnakhova L.M. et al. Pentraxin-3 – a promising biological
marker in heart failure: literature review. Consilium Medicum. 2022;
24 (1):53–9. DOI: 10.26442/20751753.2022.1.201382. (in Russian)
5. Alieva A.M., Reznik E.V., Pinchuk T.V., Arakelyan R.A., Valiev R.K.,
Rakhaev A.M. et al. Growth Differentiation Factor-15 (GDF-15) is
a Biological Marker in Heart Failure. Arkhiv` vnutrenney meditsiny.
2023; 13 (1): 14-23. DOI: 10.20514/2226-6704-2023-13-1-14-23. (in
Russian)
6. Alieva A.M., Teplova N.V., Kislyakov V.A., Voronkova K.V.,
Shnahova L.M., Valiev R.K. et al. Biomarkery v kardiologii: mikroRNK
i serdechnaya nedostatochnost’. Terapiya. 2022; 1: 60-70.
DOI: 10.18565/therapy.2022.1.60-70. (in Russian)
7. Lubrano V., Balzan S., Papa A. LOX-1 variants modulate the severity
of cardiovascular disease: state of the art and future directions. Mol.
Cell Biochem. 2023. DOI: 10.1007/s11010-023-04859-0.
8. Sánchez-León M.E., Loaeza-Reyes K.J., Matias-Cervantes C.A.,
Mayoral-Andrade G., Pérez-Campos E.L., Pérez-Campos-Mayoral L.
et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular
and Clinical Review. Int. J. Mol. Sci. 2024; 25 (10): 5276. DOI:
10.3390/ijms25105276.
9. Bagheri B., Khatibiyan Feyzabadi Z., Nouri A., Azadfallah A.,
Mahdizade Ari M., Hemmati M. et al. Atherosclerosis and Toll-
Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-
1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin
Type9 (PCSK9). Mediators Inflamm. 2024; 2024: 5830491. DOI:
10.1155/2024/5830491.
10. Truthe S., Klassert T.E., Schmelz S., Jonigk D., Blankenfeldt W.,
Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein
Receptor-1 in Inflammation and Pathogen-Associated Interactions. J.
Innate Immun. 2024; 16 (1): 105-32. DOI: 10.1159/000535793.
11. Pyrpyris N., Dimitriadis K., Beneki E., Iliakis P., Soulaidopoulos S.,
Tsioufis P., et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic
Target in Atherogenesis. Curr. Probl. Cardiol. 2024; 49 (1 Pt C):
102117. DOI: 10.1016/j.cpcardiol.2023.102117.
12. Munno M., Mallia A., Greco A., Modafferi G., Banfi C., Eligini S.
Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and
Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious
Circle in Atherosclerotic Process. Antioxidants (Basel). 2024; 13 (5):
583. DOI: 10.3390/antiox13050583.
13. Barreto J., Karathanasis S.K., Remaley A., Sposito A.C. Role of
LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1)
as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential
Clinical Use. Arterioscler. Thromb. Vasc. Biol. 2021; 41 (1): 153-66.
DOI: 10.1161/ATVBAHA.120.315421.
14. Inoue K., Arai Y., Kurihara H., Kita T., Sawamura T. Overexpression
of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial
vasculopathy in apolipoprotein E-null mice. Circ. Res.
2005; 97 (2): 176-84. DOI: 10.1161/01.RES.0000174286. 73200.d4.
15. Schaeffer D.F., Riazy M., Parhar K.S., Chen J.H., Duronio V.,
Sawamura T., Steinbrecher U.P. LOX-1 augments oxLDL uptake by
lysoPC-stimulated murine macrophages but is not required for oxLDL
clearance from plasma. J. Lipid Res. 2009; 50 (8): 1676-84. DOI:
10.1194/jlr.M900167-JLR200.
16. Wang X., Ding Z., Lin J., Guo Z., Mehta J.L. LOX-1 in macrophage
migration in response to ox-LDL and the involvement of calpains.
Biochem. Biophys. Res. Commun. 2015; 467 (1): 135-9. DOI:
10.1016/j.bbrc.2015.09.100.
17. Li H., Zhuang W., Xiong T., Park W.S., Zhang S., Zha Y. et al. Nrf2 deficiency
attenuates atherosclerosis by reducing LOX-1-mediated proliferation
and migration of vascular smooth muscle cells. Atherosclerosis.
2022; 347: 1-16. DOI: 10.1016/j.atherosclerosis.2022.02.025.
18. Catar R., Chen L., Zhao H., Wu D., Kamhieh-Milz J., Lücht C. et al.
Native and Oxidized Low-Density Lipoproteins Increase the Expression
of the LDL Receptor and the LOX-1 Receptor, Respectively, in
Arterial Endothelial Cells. Cells. 2022; 11 (2): 204. DOI: 10.3390/
cells11020204.
19. Cimmino G., Cirillo P., Conte S., Pellegrino G., Barra G., Maresca L.
et al. Oxidized low-density lipoproteins induce tissue factor expression
in T-lymphocytes via activation of lectin-like oxidized low-density
lipoprotein receptor-1. Cardiovasc. Res. 2020; 116 (6): 1125-35.
DOI: 10.1093/cvr/cvz230.
20. Chang S.F., Chang P.Y., Chou Y.C., Lu S.C. Electronegative LDL
Induces M1 Polarization of Human Macrophages Through a LOX-
1-Dependent Pathway. Inflammation. 2020; 43 (4): 1524-35. DOI:
10.1007/s10753-020-01229-6.
21. Deng Q., Li H., Yue X., Guo C., Sun Y., Ma C. et al. Smooth muscle
liver kinase B1 inhibits foam cell formation and atherosclerosis via
direct phosphorylation and activation of SIRT6. Cell Death Dis. 2023;
14 (8): 542. DOI: 10.1038/s41419-023-06054-x.
22. Ding Z., Liu S., Wang X., Dai Y., Khaidakov M., Deng X. et al. LOX-
1, mtDNA damage, and NLRP3 inflammasome activation in macrophages:
implications in atherogenesis. Cardiovasc. Res. 2014; 103
(4): 619-28. DOI: 10.1093/cvr/cvu114.
23. Wang X., Ding Z., Lin J., Guo Z., Mehta J.L. LOX-1 in macrophage
migration in response to ox-LDL and the involvement of calpains.
Biochem. Biophys. Res. Commun. 2015; 467 (1): 135-9.
DOI:10.1016/j.bbrc.2015.09.100.
24. Buonfiglio F., Xia N., Yüksel C., Manicam C., Jiang S., Zadeh J.K.
et al. Studies on the Effects of Hypercholesterolemia on Mouse Ophthalmic
Artery Reactivity. Diseases. 2023; 11 (4): 124. DOI: 10.3390/
diseases11040124.
25. El-Hajjar L., Hindieh J., Andraos R., El-Sabban M., Daher J. Myeloperoxidase-
Oxidized LDL Activates Human Aortic Endothelial Cells
through the LOX-1 Scavenger Receptor. Int. J. Mol. Sci. 2022; 23 (5):
2837. DOI: 10.3390/ijms23052837.
26. Lu H., Xu Y., Zhao H., Xu X. A novel rabbit model of atherosclerotic
vulnerable plaque established by cryofluid-induced endothelial injury.
Sci. Rep. 2024; 14 (1): 9447. DOI: 10.1038/s41598-024-60287-0.
27. Li T.T., Cui Y.T., Li T.H., Xiang Q., Chen Y.Y., Zheng X.L. et al.
TM6SF2 reduces lipid accumulation in vascular smooth muscle cells
by inhibiting LOX-1 and CD36 expression. Exp. Cell Res. 2023; 429
(2): 113666. DOI: 10.1016/j.yexcr.2023.113666.
28. Lu J., Wang X., Wang W., Muniyappa H., Hu C., Mitra S. et al. LOX-
1 abrogation reduces cardiac hypertrophy and collagen accumulation
following chronic ischemia in the mouse. Gene Ther. 2012; 19 (5):
522-31. DOI: 10.1038/gt.2011.133.
29. Lu J., Wang X., Wang W., Muniyappa H., Hu C., Mitra S et al. LOX-
1 abrogation reduces cardiac hypertrophy and collagen accumulation
following chronic ischemia in the mouse. Gene Ther. 2012; 19 (5):
522-31. DOI: 10.1038/gt.2011.133.
30. Li D., Williams V., Liu L., Chen H., Sawamura T., Romeo F. et al.
Expression of lectin-like oxidized low-density lipoprotein receptors
during ischemia-reperfusion and its role in determination of apoptosis
and left ventricular dysfunction. J. Am. Coll. Cardiol. 2003; 41 (6):
1048-55. DOI: 10.1016/s0735-1097(02)02966-2.
31. Kattoor A.J., Goel A., Mehta J.L. LOX-1: Regulation, Signaling and
Its Role in Atherosclerosis. Antioxidants (Basel). 2019; 8 (7): 218.
DOI: 10.3390/antiox8070218.
32. Inoue N., Okamura T., Kokubo Y., Fujita Y., Sato Y., Nakanishi M.
et al. LOX index, a novel predictive biochemical marker for coronary
heart disease and stroke. Clin. Chem. 2010; 56 (4): 550-8. DOI:
10.1373/clinchem.2009.140707.
33. Markstad H., Edsfeldt A., Yao Mattison I., Bengtsson E., Singh P.,
Cavalera M. et al. High Levels of Soluble Lectinlike Oxidized Low-
Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque
Inflammation and Increased Risk of Ischemic Stroke. J. Am. Heart
Assoc. 2019; 8 (4): e009874. DOI: 10.1161/JAHA.118.009874.
34. Sheikh M.S.A. Circulatory soluble LOX-1 is a novel predictor for
coronary artery disease patients. Cardiovasc. J. Afr. 2023; 34 (2): 104-
8. DOI: 10.5830/CVJA-2022-038.
35. Kobayashi N., Hata N., Kume N., Seino Y., Inami T., Yokoyama S.
et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1
as an early biomarker for ST elevation myocardial infarction: timedependent
comparison with other biomarkers: time-dependent comparison
with other biomarkers. Circ. J. 2011; 75 (6): 1433-9. DOI:
10.1253/circj. cj-10-0913.
36. Kim K., Lim C., Kim G., Chung J.H., Cho Y.S., Cho J.H. et al. Association
of Plasma Marker of Oxidized Lipid with Histologic Plaque
Instability in Patients with Peripheral Artery Disease. Ann. Vasc. Surg.
2020; 66: 554-65. DOI: 10.1016/j.avsg.2019.11.004.
37. Kraler S., Wenzl F.A., Georgiopoulos G., Obeid S., Liberale L., von
Eckardstein A. et al. Soluble lectin-like oxidized low-density lipoprotein
receptor-1 predicts premature death in acute coronary syndromes.
Eur. Heart J. 2022; 43 (19): 1849-60. DOI: 10.1093/eurheartj/
ehac143.
38. Jiao Y., Qin Y., Zhang Z., Zhang H., Liu H., Li C. Early identification
of carotid vulnerable plaque in asymptomatic patients. BMC
Cardiovasc. Disord. 2020; 20 (1): 429. DOI: 10.1186/s12872-020-
01709-5.
39. Li X.M., Jin P.P., Xue J., Chen J., Chen Q.F., Luan X.Q. et al. Role
of sLOX-1 in intracranial artery stenosis and in predicting long-term
prognosis of acute ischemic stroke. Brain Behav. 2017; 8 (1): e00879.
DOI: 10.1002/brb3.879.
40. Lin Q., Ba H.J., Dai J.X., Sun J., Lu C., Chen M.H. et al. Serum
soluble lectin-like oxidized low-density lipoprotein receptor-1 concentrations
and prognosis of aneurysmal subarachnoid hemorrhage.
Clin. Chim. Acta. 2020; 500: 54-8. DOI: 10.1016/j.cca.2019.09.017.
41. Zhang Q., Chu Y., Jin G., Dai J., Kang H. Association Between LOX-
1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and
Carotid Plaque in a Northern Chinese Population. Genet. Test Mol.
Biomarkers. 2020; 24 (3): 138-44. DOI: 10.1089/gtmb.2019.0209.
42. Salehipour P., Rezagholizadeh F., Mahdiannasser M., Kazerani
R., Modarressi M.H. Association of OLR1 gene polymorphisms
with the risk of coronary artery disease: A systematic review and
meta-analysis. Heart Lung. 2021; 50 (2): 334-43. DOI: 10.1016/j.
hrtlng.2021.01.015.
43. Hussein R.A., Abdul-Rasheed O.F., Basheer M. Evaluation of soluble
lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and
sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary
syndrome. Acta Biochim. Pol. 2022; 69 (2): 309-14. DOI: 10.18388/
abp.2020_5735.
44. Schiopu A., Björkbacka H., Narasimhan G., Loong B.J., Engström
G., Melander O. et al. Elevated soluble LOX-1 predicts risk of firsttime
myocardial infarction. Ann. Med. 2023; 55 (2): 2296552. DOI:
10.1080/07853890.2023.2296552.
45. Lee A.S., Wang Y.C., Chang S.S., Lo P.H., Chang C.M., Lu J. et al.
Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in
Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation
Myocardial Infarction. J. Am. Heart Assoc. 2020; 9 (2): e014008.
DOI: 10.1161/JAHA.119.014008.
46. Stankova T., Delcheva G., Maneva A., Vladeva S. Serum Levels of
Carbamylated LDL and Soluble Lectin-Like Oxidized Low-Density
Lipoprotein Receptor-1 Are Associated with Coronary Artery Disease
in Patients with Metabolic Syndrome. Medicina (Kaunas). 2019; 55
(8): 493. DOI: 10.3390/medicina55080493.
47. Zhao Z.W., Xu Y.W., Li S.M., Guo J.J., Sun J.M., Hong J.C. et al.
Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year
Major Adverse Cardiovascular and Cerebrovascular Events in Patients
after Percutaneous Coronary Intervention. Dis. Markers. 2019;
2019: 4925767. DOI: 10.1155/2019/4925767.
48. Liu J., Liu Y., Jia K., Huo Z., Huo Q., Liu Z., et al. Clinical analysis
of lectin-like oxidized low-density lipoprotein receptor-1 in patients
with in-stent restenosis after percutaneous coronary intervention.
Medicine (Baltimore). 2018; 97 (17): e0366. DOI: 10.1097/
MD.0000000000010366.
49. Taskin H.E., Kocael A., Kocael P., Zengin K., Al M., Sozer V. et al.
Original contribution: sleeve gastrectomy reduces soluble lectin-like
oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients
with morbid obesity. Surg. Endosc. 2022; 36 (4): 2643-52. DOI:
10.1007/s00464-021-08989-8.
50. Vavere A.L., Sinsakul M., Ongstad E.L., Yang Y., Varma V., Jones
C. et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1
Inhibition in Type 2 Diabetes: Phase 1 Results. J. Am. Heart Assoc.
2023; 12 (3): e027540. DOI: 10.1161/JAHA.122.027540.