Список литературы
Лазарева А.В., Чеботарь И.В., Крыжановская О.А., Чеботарь В.И., Маянский Н.А. Pseudomonas aeruginosa: патогенность, патогенез и патология. Клиническая микробиология и антимикробная химиотерапия. 2015; 17(3): 170-86.
Lister P.D., Wolter D.J., Hanson N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009; 22(4): 582-610.
Данные с сайта Европейского комитета по тестированию чувствительности к антибиотикам. Available at: https://www.eucast.org/resistance_mechanisms/. (дата обращения: cентябрь 2017 г.)
Rizek C., Fu L., Dos Santos L.C., Leite G., Ramos J., Rossi F. et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann. Clin. Microbiol. Antimicrob. 2014; 13: 43.
Sedighi M., Vaez H., Moghoofeie M., Hadifar S., Oryan G., Faghri J. Molecular detection of metallo-β-lactamase gene blaVIM-1 in imipenem-resistant Pseudomonas aeruginosa strains isolated from hospitalized patients in the hospitals of Isfahan. Adv. Biomed. Res. 2015; 4: 57.
Al Bayssari C., Diene S.M., Loucif L., Gupta S.K., Dabboussi F., Mallat H. et al. Emergence of VIM-2 and IMP-15 Carbapenemases and Inactivation of oprD Gene in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates from Lebanon. Antimicrob. Agents Chemother. 2014; 58(8): 4966-70.
Paul D., Dhar D., Maurya A.P., Mishra S., Sharma G.D., Chakravarty A. et al. Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India. Ann. Clin. Microbiol. Antimicrob. 2016; 15: 31.
Эйдельштейн М.В., Сухорукова М.В., Склеенова Е.Ю., Иванчик Н.В., Микотина А.В., Шек Е.А., Дехнич А.В., Козлов Р.С. и исследовательская группа «МАРАФОН». Антибиотикорезистентность нозокомиальных штаммов Pseudomonas aeruginosa в стационарах России: результаты многоцентрового эпидемиологического исследования «МАРАФОН» в 2013-2014 гг. Клиническая микробиология и антимикробная химиотерапия. 2017; 19(1): 37-41.
Edelstein M.V., Skleenova E.N., Shevchenko O.V., D’souza J.W., Tapalski D.V., Azizov I.S. et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013; 13(10): 867-76.
Hammoudi D., Moubareck C.A., Sarkis D.K. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J. Microbiol. Methods. 2014; 107: 106-18.
Poirel L., Walsh T.R., Cuvillier V., Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011; 70(1): 119-23.
Bogaerts P., Bebrone C., Huang T.D., Bouchahrouf W., Degheldre Y., Deplano A. et al. Detection and characterization of VIM-31, a new variant of VIM-2 with Tyr224His and His252Arg mutations, in a clinical isolate of Enterobacter cloacae. Antimicrob. Agents Chemother. 2012; 56(6): 3283-7.
Nordmann P., Gniadkowski M., Giske C.G., Poirel L., Woodford N., Miriagou V., European Network on Carbapenemases. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 2012; 18(5): 432-8.
Cohen Stuart J., Leverstein-Van Hall M.A. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int. J. Antimicrob. Agents. 2010; 36(3): 205-10.
Woodford N., Eastaway A.T., Ford M., Leanord A., Keane C. et al. Comparison of BD Phoenix, Vitek 2, and MicroScan Automated Systems for Detection and Inference of Mechanisms Responsible for Carbapenem Resistance in Enterobacteriaceae. J. Clin. Microbiol. 2010; 48(8): 2999-3002.
Sng W., Kim H., Kim J., Kim H.S, Shin D.H., Shin S. et al. Carbapenem Inactivation Method: Accurate Detection and Easy Interpretation of Carbapenemase Production in Enterobacteriaceae and Pseudomonas spp. Ann. Clin. Microbiol. 2016; 19(4): 83-87.
Mathew A., Harris A.M., Marshall M.J., Ross G.W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J. Gen. Microbiol. 1975; 88(1): 169-78.
Kitao T., Miyoshi-Akiyama T., Tanaka M., Narahara K., Shimojima M., Kirikae T. Development of an immunochromatographic assay for diagnosing the production of IMP-type metallo-β-lactamases that mediate carbapenem resistance in Pseudomonas. J. Microbiol. Methods. 2011; 87(3): 330-7.
Bernabeu S., Poirel L., Nordmann P. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2012; 74(1): 88-90.
Бочарова Ю.А., Чеботарь И.В., Маянский Н.А. Возможности, проблемы и перспективы масс-спектрометрических технологий в медицинской микробиологии (обзор литературы). Клиническая лабораторная диагностика. 2016; 61(4): 249-56.
Knox J., Jadhav S., Sevior D., Agyekum A., Whipp M., Waring L. et al. Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Carba NP test. J. Clin. Microbiol. 2014; 52: 4075-7.
Lasserre C., De Saint Martin L., Cuzon G., Bogaerts P., Lamar E., Glupczynski Y. et al. Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assistedlaser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J. Clin. Microbiol. 2015; 53: 2163-71.
Hrabak J., Walkova R., Studentova V., Chudackova E., Bergerova T. Carbapenemase Activity Detection by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011; 49(9): 3222-7.
Johansson А., Ekelof J., Giske C., Sundqvist M. The detection and verification of carbapenemases using ertapenem and Matrix Assisted Laser Desorption Ionization-Time of Flight. BMC Microbiol. 2014; 14: 89.
Hoyos-Mallecot Y., Cabrera-Alvargonzalez J.J., Miranda-Casas C., Rojo-Martin M.D., Liebana-Martos C., Navarro-Mari J.M. MALDI-TOF MS, a useful instrument for differentiating metallo-β-lactamases in Enterobacteriaceae and Pseudomonas spp. Lett. Appl. Microbiol. 2014; 58(4): 325-9.
Данные с сайта Европейского комитета по тестированию чувствительности к антибиотикам. Available at: https://www.eucast.org/clinical_breakpoints. (дата обращения: Сентябрь 2017 г.)
Данные с сайта Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии. Available at: https://www.antibiotic.ru/minzdrav/clinical-recommendations/. (дата обращения: cентябрь 2017 г.)
Monteferrante C.G., Sultan S., Ten Kate M.T., Dekker L.J., Sparbier K., Peer M. et al. Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J. Antimicrob. Chemother. 2016; 71(10): 2856-67.
Wolter D.J., Lister P.D. Mechanisms of β-lactam Resistance Among Pseudomonas aeruginosa. Current Pharmaceutical Design. 2013; 19: 209-22.
Fournier D., Richardot C., Müller E., Robert-Nicoud M., Llanes C., Plesiat P. et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013; 68(8): 1772-80.