Аннотация
Важнейшая особенность диагностики хронической болезни почек (ХБП) – отсутствие репрезентативных методов, выявляющих повреждение почек на ранней стадии заболевания. Несвоевременнаядиагностика, особенно в детском возрасте, повышает риск развития осложнений и снижает эффективность возможного лечения. Цель работы – продемонстрировать современные подходы к поиску новых маркёров ХБП, основанных на применении омиксных метаболомных технологий. В базах данных Web of Science, Scopus и РИНЦ отобрали 61 релевантный источник, содержащий актуальные данные клинических и научных исследований по теме данного обзора. Отмечены основные свойства биомаркёров ХБП: чувствительность и специфичность, чёткая связь с определённым звеном патогенеза, способность определить повреждение почек на раннем этапе, доступность для измерения в клинической практике. Определены базовые патогенетические механизмы развития ХБП: потеря функционирующих нефронов, повреждение извитых канальцев, воспаление и фиброз, – биохимические субстраты которых могут являться подходящими биомаркёрами. В качестве наиболее перспективного метода поиска биомаркёров мы рассмотрели масс-спектрометрию в сочетании с различными модификациями ввода пробы. Провели сравнение классического целевого метода, изучающего конкретные соединения,
и нетаргетного анализа, измеряющего спектр метаболитов с дальнейшей статистической обработкой. Представлена характеристика основных метаболомных исследований, сформировавших панели биомаркёров для почечной дисплазии у детей, гломерулопатий, диабетической и мембранозной нефропатий. ХБП – неуклонно прогрессирующее полиэтиологичное заболевание, требующее применения методов ранней диагностики, особенно в педиатрической практике. Изучение
механизмов повреждения почек и совершенствование технологий анализа метаболома способствует открытию новых биомаркёров, необходимых для ранней диагностики, прогнозирования течения болезни и дальнейшего выбора оптимальной персонифицированной терапии.
Список литературы
1. Taherkhani A., Farrokhi Y.R, Mohseni M., Saidijam M., Arefi Oskouie A. Chronic kidney disease: a review of proteomic and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy biomarkers. Proteome Sci.
2019; 17(1):7. DOI: 10.1186/s12953-019-0155-y.
2. Hill N.R., Fatoba S.T., Oke J.L., Hirst J.A., O’Callaghan C.A., Lasserson D.S., Hobbs F.D. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(7):e0158765. DOI: 10.1371/journal.pone.0158765.
3. Sleeman KE, de Brito M, Etkind S, Nkhoma K, Guo P, Higginson IJ, et al. The escalating global burden of serious health-related suffering: projections to 2060 by world regions, age groups, and health conditions. The Lancet Global Health. 2019; 7:e883-92. DOI: 10.1016/
S2214-109X(19)30172-X.
4. Webster A.C., Nagler E.V., Morton R.L., Masson P. Chronic Kidney Disease. The Lancet. 2017; 389(10075):1238-52. DOI: 10.1016/ S0140-6736(16)32064-5.
5. Sanchez-Niño M.D., Sanz A.B., Ramos A.M., Fernandez-Fernandez B., Ortiz A. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. Car. 2017; 10(2):188-91. DOI:10.1093/ckj/sfx0236.
6. Eckardt K.U., Coresh J., Devuyst O., Johnson R.J., Köttgen A., Levey A.S. et al. Evolving importance of kidney disease: from subspecialty to global health burden. The Lancet. 2013; 382(9887):158- 69. DOI: 10.1016/S0140-6736(13)60439-01.
7. George J.A., Gounden V. Novel glomerular filtration markers. In: Advances in Clinical Chemistry. Elsevier. 2019; 88 (4):91-119. DOI: 10.1016/bs.acc.2018.10.005.
8. Smirnov A.V., Shilov E.M., Dobronravov V.A., Kayukov I.G., Bobkova I.N., Shvetsov M.Yu. et al. National guidelines. chronic kidney disease: basic principles of screening, diagnosis, prevention and treatment approaches. Nefrologiya (St.-Petersburg). 2012; 16(1):89-
115. DOI: 10.24884/1561-6274-2012-16-1-89-115. (in Russian)
9. Nickolas T.L., Barasch J., Devarajan P. Biomarkers in acute and chronic kidney disease. Current Opinion in Nephrology & Hypertension. 2008; 17(2):127-32. DOI:10.1097/
MNH.0b013e3282f4e525.
10. Zhang W.R., Parikh C.R. Biomarkers of Acute and Chronic Kidney Disease. Annu. Rev. Physiol. 2019; 81(1):309-3. DOI: 10.1146/annurev- physiol-020518-114605.
11. Mussap M., Noto A., Fanos V., Van Den Anker J.N. Emerging Biomarkers and Metabolomics for Assessing Toxic Nephropathy and Acute Kidney Injury (AKI) in Neonatology. BioMed. Research International. 2014; 2014:1-16. DOI: 10.1155/2014/602526.
12. Rysz J., Gluba-Brzózka A., Franczyk B., Jabłonowski Z., Ciałkowska-Rysz A. Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. IJMS. 2017; 18(8):1702. DOI: 10.3390/ijms18081702.
13. Slocum J.L., Heung M., Pennathur S. Marking renal injury: can we move beyond serum creatinine? Translational Research. 2012; 159(4):277-89. DOI:10.1016/j.trsl.2012.01.014.
14. Molin L., Seraglia R., Lapolla A., Ragazzi E., Gonzalez J., Vlahou A. et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. Journal of Proteomics. 2012; 75(18):5888-97. DOI:10.1016/j.jprot.2012.07.024.
15. Lv W., Booz G.W., Wang Y., Fan F., Roman R.J. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. European Journal of Pharmacology. 2018; 820:65-76. DOI:10.1016/j.ejphar.2017.12.016.
16. Chagnac A., Zingerman B., Rozen-Zvi B., Herman-Edelstein M. Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in the Pathogenesis of Chronic Kidney Disease
in Diabetes and Obesity. Nephron. 2019; 143(1):38-42. DOI: 10.1159/000499486.
17. Lindhardt M., Persson F., Currie G., Pontillo C., Beige J., Delles C. et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016; 6(3):e010310. DOI: 10.1136/ bmjopen-2015-010310.
18. Helal I., Fick-Brosnahan G.M., Reed-Gitomer B., Schrier R.W. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012; 8(5):293-300. DOI:10.1038/ nrneph.2012.19.
19. Romagnani P., Remuzzi G., Glassock R., Levin A., Jager K.J., Tonelli M. et al. Chronic kidney disease. Nat. Rev. Dis. Primers. 2017; 3(1):17088. DOI:10.1038/nrdp.2017.88
20. Duffield J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 2014; 124(6):2299-2306. DOI: 10.1172/JCI72267.
21. Humphreys B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018; 80(1):309-26. DOI: 10.1146/annurev-physiol-022516-034227.
22. Wang Y.N., Ma S.X., Chen Y.Y., Chen L., Liu B.L., Liu Q.Q. et al. Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clinica Chimica Acta. 2019; 499:54-63. DOI:10.1016/j.cca.2019.08.030.
23. Schnaper H.W. The Tubulointerstitial Pathophysiology of Progressive
Kidney Disease. Advances in Chronic Kidney Disease. 2017; 24(2):107-16. DOI:10.1053/j.ackd.2016.11.011.
24. Fu Q., Colgan S.P., Shelley C.S. Hypoxia: The Force that Drives Chronic Kidney Disease. Clinical Medicine & Research. 2016; 14(1):15-39. DOI:10.3121/cmr.2015.1282.
25. Tanaka S., Tanaka T., Nangaku M. Hypoxia and Dysregulated Angiogenesis in Kidney Disease. Kidney Dis. 2015; 1(1):80-9. DOI: 10.1159/000381515.
26. Gupta J., Mitra N., Kanetsky P.A., Devaney J., Wing M.R., Reilly M. et al. Association between Albuminuria, Kidney Function, and Inflammatory Biomarker Profile in CKD in CRIC. Clinical Journal of the American Society of Nephrology. 2012; 7(12):1938-46. DOI:
10.2215/CJN.03500412.
27. Nkuipou-Kenfack E., Duranton F., Gayrard N., Argilés À., Lundin U., Weinberger K.M. et al. Assessment of Metabolomic and Proteomic Biomarkers in Detection and Prognosis of Progression of Renal Function in Chronic Kidney Disease. Philippe Rouet PhD, ed.
PLoS ONE. 2014; 9(5):e96955. DOI:10.1371/journal.pone.0096955.
28. Uwaezuoke S., Ayuk A., Muoneke V., Mbanefo N. Chronic kidney disease in children: Using novel biomarkers as predictors of disease. Saudi J. Kidney Dis. Transpl. 2018; 29(4):775. DOI:10.4103/1319- 2442.239657.
29. Jacob M., Lopata A.L., Dasouki M., Abdel Rahman A.M. Metabolomics toward personalized medicine. Mass Spec. Rev. 2019; 38(3):221-38. DOI:10.1002/mas.21548.
30. Sparano J.A., Paik S. Development of the 21-Gene Assay and Its Application in Clinical Practice and Clinical Trials. J.C.O. 2008; 26(5):721-8. DOI:10.1200/JCO.2007.15.1068.
31. van Wijck K., van Eijk H.M.H., Buurman W.A., Dejong C.H.C., Lenaerts K. Novel analytical approach to a multi-sugar whole gut permeability assay. Journal of Chromatography B. 2011; 879(26):2794- 2801. DOI:10.1016/j.jchromb.2011.08.002.
32. Marx D., Metzger J., Pejchinovski M., Gil R.B., Frantzi M., Latosinska A. et al. Proteomics and Metabolomics for AKI Diagnosis. Seminars in Nephrology. 2018; 38(1):63-87. DOI: 10.1016/j.semnephrol. 2017.09.007.
33. Mischak H., Vlahou A., Ioannidis J.P.A. Technical aspects and interlaboratory variability in native peptide profiling: The CE–MS experience. Clinical Biochemistry. 2013; 46(6):432-43. DOI: 10.1016/j. clinbiochem.2012.09.025.
34. Subramanian J., Simon R. Overfitting in prediction models – Is it a problem only in high dimensions? Contemporary Clinical Trials. 2013; 36(2):636-41. DOI:10.1016/j.cct.2013.06.011.
35. Schanstra J.P., Zürbig P., Alkhalaf A., Argiles A., Bakker S.J., Beige J. et al. Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. Journal of the American Society of Nephrology. 2015; 26(8):1999-2010. DOI:10.1681/ASN.2014050423.
36. Coene K.L.M., Kluijtmans L.A.J., van der Heeft E., Engelke U.F.H., de Boer S., Hoegen M. et al. Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018; 41(3):337-53. DOI: 10.1007/s10545-017-0131-6.
37. Khoomrung S., Wanichthanarak K., Nookaew I., Thamsermsang O., Seubnooch P., Laohapand T. et al. Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine. Front. Pharmacol. 2017; 8:474. DOI:10.3389/fphar.2017.00474.
38. Hsu C.W., Chang K.P., Huang Y., Liu H.P., Hsueh P.C., Gu P.W. et al. Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma. Mol. Cell Proteomics. 2019; 18(10):1939-49.
DOI:10.1074/mcp.RA119.001654.
39. Kim K., Aronov P., Zakharkin S.O., Anderson D., Perroud B., Thompson I.M. et al. Urine Metabolomics Analysis for Kidney Cancer Detection and Biomarker Discovery. Mol. Cell Proteomics. 2009; 8(3):558-70. DOI:10.1074/mcp.M800165-MCP200.
40. Khamis M.M., Adamko D.J., El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery: mass spectrometry in urine metabolomics and biomarker discovery. Mass Spec. Rev. 2017; 36(2):115-34. DOI:10.1002/mas.21455.
41. Dass C. Fundamentals of Contemporary Mass Spectrometry. Fundamentals of Contemporary Mass Spectrometry. 2006; Chapter 1:52-3. DOI: 10.1002/9780470118498.
42. De Hoffmann E., Stroobant V. Mass Spectrometry: Principles and Applications. Somerset: Wiley, 2013; Chapter 1:15-7.
43. Hübschmann H.-J. Handbook of GC-MS: fundamentals and applications; [gas chromatography – mass spectrometry], 3rd ed. Weinheim: Wiley-VCH. 2015; Chapter 2:250-4.
44. Ramautar R., Nevedomskaya E., Mayboroda O.A., Deelder A.M., Wilson I.D., Gika H.G. et al. Metabolic profiling of human urine by CE-MS using a positively charged capillary coating and comparison with UPLC-MS. Mol. BioSyst. 2011; 7(1):194-9. DOI: 10.1039/ C0MB00032A.
45. Lindon J.C., Nicholson J.K., Holmes E. The Handbook of Metabonomics and Metabolomics. Elsevier Science. 2011; Chapter 5:149- 50. http://www.123library.org/book_details/?id=36194.
46. Pasikanti K.K., Ho P.C., Chan E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008; 871(2):202-11. DOI:10.1016/j.jchromb.2008.04.033.
47. Yin P., Wan D., Zhao C., Chen J., Zhao X., Wang W. et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol. BioSyst. 2009; 5(8):868. DOI: 10.1039/b820224a.
48. Ligor T., Zawadzka J., Strączyński G., González Paredes R.M., Wenda-Piesik A., Ratiu I.A. et al. Searching for Potential Markers of Glomerulopathy in Urine by HS-SPME-GC×GC TOFMS. Molecules. 2021; 26(7):1817. DOI: 10.3390/molecules26071817.
49. Zhang S., Raftery D. Headspace SPME-GC-MS Metabolomics Analysis of Urinary Volatile Organic Compounds (VOCs). In: Raftery D, ed. Mass Spectrometry in Metabolomics. Vol 1198. Methods in Molecular Biology. Springer New York; 2014; Chapter 17:265-72.
DOI: 10.1007/978-1-4939-1258-2_17.
50. Halket J.M., Waterman D., Przyborowska A.M., Patel R.K.P., Fraser P.D., Bramley P.M. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany. 2005; 56(410):219-43. DOI:10.1093/jxb/
eri069.
51. Smon A., Cuk V., Brecelj J., Murko S., Groselj U., Zerjav Tansek M. et al. Comparison of liquid chromatography with tandem mass spectrometryand ion-exchange chromatography by post-column ninhydrin derivatization for amino acid monitoring. Clinica Chimica Acta.
2019; 495:446-50. DOI: 10.1016/j.cca.2019.05.007.
52. Boudonck K.J., Mitchell M.W., Német L., Keresztes L., Nyska A., Shinar D. et al. Discovery of Metabolomics Biomarkers for Early Detection of Nephrotoxicity. Toxicol. Pathol. 2009; 37(3):280-92. DOI: 10.1177/0192623309332992.
53. Toyohara T., Akiyama Y., Suzuki T., Takeuchi Y., Mishima E., Tanemoto M. et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens. Res. 2010; 33(9):944-52. DOI:10.1038/ hr.2010.113.
54. Post A., Bollenbach A., Bakker S.J.L., Tsikas D. Whole-body arginine dimethylation is associated with all-cause mortality in adult renal transplant recipients. Amino Acids. 2021; 53(4):541-54. DOI: 10.1007/s00726-021-02965-1.
55. Franiek A., Sharma A., Cockovski V., Wishart D.S., Zappitelli M., Blydt-Hansen T.D. Urinary metabolomics to develop predictors for pediatric acute kidney injury. Pediatr. Nephrol. 2022;
37:2079–90.
56. Sigdel T.K., Schroeder A.W., Yang J.Y.C., Sarwal R.D., Liberto J.M., Sarwal M.M. Targeted Urine Metabolomics for Monitoring Renal Allograft Injury and Immunosuppression in Pediatric Patients. JCM. 2020; 9(8):2341. DOI:10.3390/jcm9082341.
57. Gao X., Chen W., Li R., Wang M., Chen C., Zeng R. et al. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum. BMC Syst. Biol. 2012; 6(S1):S14. DOI: 10.1186/1752-0509-6-S1-S14.
58. Mirzoyan K., Baïotto A., Dupuy A., Marsal D., Denis C., Vinel C. et al. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease. J. Physiol. Biochem. 2016; 72(4):803-12. DOI: 10.1007/s13105-016-0518-0.
59. Rabbani N., Thornalley P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney International. 2018; 93(4):803-13. DOI:10.1016/j.kint.2017.11.034.
60. Feng Q., Li Y., Yang Y., Feng J. Urine Metabolomics Analysis in Patients With Normoalbuminuric Diabetic Kidney Disease. Front. Physiol. 2020; 11:578799. DOI: 10.3389/fphys.2020.578799.
61. Macioszek S., Wawrzyniak R., Kranz A., Kordalewska M., Struck- Lewicka W., Dudzik D. et al. Comprehensive Metabolic Signature of Renal Dysplasia in Children. A Multiplatform Metabolomics Concept. Front. Mol. Biosci. 2021; 8:665661. DOI:10.3389/fmolb.2021.665661.