Аннотация
В настоящее время появилась концепция колонизации «стерильного» биотопа, которым является кровь. Современные молекулярно-генетические методы показали наличие бактериальной ДНК в крови практически здоровых лиц при отрицательной
гемокультуре. Микробиом крови не изучен, но предполагают его клиническое влияние на здоровье человека. В крови обнаруживали: плеоморфные бактерии, хламидиоподобные микроорганизмы и в L-форме. RNA-Seq-технология позволяет обнаружить различные микроорганизмы, геном которых не совпадает с геномом человека. Основу микробиома крови составляют
4 доминирующих типа: Proteobacteria, Firmicutes, Actinobacteria, Bacteroides. Знания о характере микробиома крови необходимы для совершенствования безопасности переливания крови.
Annotation
At present, the concept of colonization of a «sterile» biotope, that is blood, has appeared. Modern molecular — genetic methods have
shown the presence of bacterial DNA in the blood of practically healthy individuals with negative blood culture. Blood microbiome
has not been studied, but its clinical impact on human health is suspected. In the blood there were found: pleomorphic bacteria,
chlamydia-like microorganisms and in the L-form. RNA-Seq technology makes it possible to find various microorganisms whose
genome does not correspond with the human genome. The 4 dominant types of blood microbiome are: Proteobacteria, Firmicutes,
Actinobacteria and Bacteroides. Knowledge of the nature of blood microbiome is essential safer blood transfusion.
Key words: biotope; blood nonsterility; PCR; sequencing
Список литературы
1. Paisse S., Valle C., Servant F., Courtney M., Burcelin R., Amar J. et al.
Comprehensive description of blood microbiome from healthy donors
assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;
56: 1138-47.
2. Potgieter M., Bester J., Kell D.B., Pretorius E. The dormant blood
microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev.
2015; 39: 567-91.
3. Amar J., Lange C., Payros G., Garret C., Chabo Ch., Lantieri J. et al.
Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. Plos
One. 2013; 8: e54461.
4. Markova N. Dysbiotic microbiota in autistic children and their mothers: persistence of fungal and bacterial wall-deficient L-form variants
in blood. Scientific Reports. 2019; 9: 13401. DOI: 10.1038/s41598-
019-49768-9.
5. Whittle E., Leonard M.O., Harrison R., Gant T.W., Tonge D.P. MultiMethod characterization of the human circulating microbiome.
Frontiers in Microbiology. 2019; 9, Article 03266. DOI: 10. 3389/
fmicb.2018.03266.
6. Nikkari S.I.J., McLaughlin W.Bi., Dodge D.E., Relman D.A. Does
blood of healthy subjects contain bacterial ribosomal DNA? J. Clin.
Microbiol. 2001; 39: 1956-9.
7. Markova N. L-form bacteria cohabitants in human blood: significance
for health and diseases. Discovery Medicine. 2017; 128: 305-13.
8. Amar J., Serino M., Lange C., Chabo C., Jacovoni J., Mondot S. et al.
Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011; 54: 3055-61.
9. Mangul S., Loohuis L.M.O., Ori A.P., Jospin G., Koslicki D., Yang H.T.
et al. Total RNA sequencing reveals microbial communities in human
blood and disease specific effects. bioRxiv. 2016, DOI: 10.1101/057570.
10. Drennan M.R. What is «Sterile blood?». British Medical Journal.
1942; 2: 526-6.
11. Tedeshi G.G., Amici D., Paparelli M. Incorporation of nucleo-sides and
amino-acids in human erythrocyte suspensions: possible relation with
a diffuse infection of mycoplasmas or bacteria in the L-form. Nature.
1969; 222: 1285-6.
12. Kalfin E. Is there normal blood flora? Internet J. Microbiol. 2006; 3(1): 1-4.
13. Kalfin E. Chlamydia-like microorganisms live in donor’s blood as normal flora. Internet J. Internal Medicine. 2004; 5(2): 1-7.
14. McLaughlin R.W., Vali H., Lau P.C.K., Palfree R.G.E., De Ciccio A.,
Sirois M. et al. Are there naturally occurring pleomorphic bacteria in
the blood of healthy humans? J. Clin. Microb. 2002; 40(12): 4771-5.
15. Tsafarova B., Hodzhev Y., Yordanov G., Tolchkov V., Kalfin R., Panaiotov S. Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front. Cell. Infect. Microbiol.
2023; 12, Article 1091341.DOI: 10.3389/fcimb.2022.1091341.
16. Damgaard C., Magnussen K., Enevold C., Nilsson M., Tolker-Nielsen
T., Holmstrup P. et al. Viable bacteria associated with red blood cells and
plasma in freshly drawn blood donations. PLoS One. 2015; 10: e0120826.
17. Panaiotov S., Filevski G., Equestre M., Nikolova E., Kalfin R. Cultural
isolation and characteristics of the blood microbiome of healthy individuals. Advances in Microbiology. 2018 ; 8: 406-21.
18. Vetrovsky T., Baldrian P. The Variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses.
PLоS One. 2013; 8(2): e57923.
19. Raeisi J., Oloomi M., Zolfaghari M.R. Bacterial DNA detection in the blood
of healthy subjects. Iranian Biomedical Journal. 2022; 26 (3) : 230-9.
20. Cheng H.S., Tan S.P., Wong D.M.K., Koo W.L.Y., Wong S.H., Tan N.S.
The blood microbiome and health: Current evidence, contoversies and
challenges. Int. J. Mol. Sci. 2023; 24: 5633.
21. Salter S.J., Cox M.J., Turek E.M., Calus S.T., Cookson W.O., Moffatt
M.F. et al. Reagent and laboratory contamination can critically impact
sequence-based microbiome analyses. BMC Biol. 2014; 12: 87.
22. Dawson S. Blood culture contaminants. J. Hosp. Infect. 2014; 87: 1-10.
23. Tichopad A., Didier A., Pfaffl M.W. Ingibition of real-time RT-PCR
quantification due to tissue-specific contaminants. Mol.Cell Probes.
2004; 18: 45-50.
24. Kargaltseva N.M., Borisova O.Yu., Kocherovets V.I., Mironov A.Yu.,
Karpova E.I., Danishuk O.I. et al. Laboratory diagnosis of communityacquired bloodstream infection in therapeutic pathology. Klinicheskaya Laboratornaya Diagnostika. 2022; 67(10): 581-8. (in Russian)
25. Shchuplova E.A., Stadnikov A.A., Fadeev S.B. The role of the biological properties of Staphylococcus epidermidis in intraerythrocyte
invasion and changes in the activity of erythrocyte catalase and superoxide dismutase in experimental generalized infection. Byulleten`
eksperimental`noy biologii i meditsiny. 2015; 159(1): 79-82. (in Russian)
26. Shchuplova E.A. The role of microbes-associates in the processes of
interactions of bacteria with erythrocytes. Byullten` Orenburgskogo
gosudarstvennogo Universiteta. 2017; 209(9): 111-4. (in Russian)
27. Wang Z., Zhang L., Guo Z., Liu L., Ji J., Zhang J. et al. A unique feature
of iron loss via close adhesion of Helicobacter pylori to host erythrocytes. PLoS One. 2012; 7(11): e50314.
28. Brekke O-L., Hellerud B.C., Christiansen D., Fure H., Castellheim
A., Nielsen E.W. et al. Neisseria meningitidis and Escherichia coli
are protected from leukocyte phagocytosis by binding to erythrocyte
complement receptor 1 in human blood. Mol. Immunol. 2011; 48 (15-
16): 2159-69. DOI: 10.1016/j.molimm.2011.07.011.
29. Horzempa J., O’Dee D.M., Stolz D.B., Franks J.M., Clay D., Nau G.J.
Invasion of erythrocytes by Francisella tularensis. J. Infect. Dis. 2011;
204: 51-9.
30. Rozov S.M., Deineko E.V. Bacterial intracellular pathogens: attack and
defense strategies. Uspekhi sovremennoy biologii. 2015; 135(5): 464-
79. (in Russian)
31. Mironov A.Yu., Leonov V.V. Iron, virulence and intermicrobial
interactions of opportunistic microorganisms. Uspekhi sovremennoy
biologii. 2016; 136(3): 301-10. (in Russian)
32. Leonov V.V., Mironov A.Yu. Biofilm formation of opportunistic
microorganisms in blood plasma depending on the iron content.
Klinicheskaya Laboratornaya Diagnostika. 2016; 61(1): 52-4. (in
Russian)
33. Deng K., Blick R.J., Liu W., Hansen E.J. Identification of Francisella
tularensis genes affected by iron limitation. Infect. Immune. 2006; 74:
4224-36.
34. Maurin M., Raoult D. Use of aminoglycosides in treatment of infectious
due to intracellular bacteria. Antimicrob. Agents Chemother. 2001; 45:
2977-86.
35. Yamaguchi M., Terao Y., Mori-Yamaguchi Y., Domon H., Sakaue Y.,
Yagi T. et al. S. Streptococcus pneumonia invades erythrocytes and
utilizes them to evade human innate immunity. PLoS One. 2013; 8(10):
e77282.
36. Brecher M.E., Hay S.N. Bacterial contamination of blood components.
Clin. Microbiol. Rev. 2005; 18: 195-204.
37. Marraffini L.A., Dedent A.C., Schneewind O. Sortases and the art
of anchoring proteins to the envelopes of gram-positive bacteria.
Microbiol. Rev. 2006; 70: 192-221.
38. Schmitt D.M., Barnes R., Rogerson T., Haught A., Mazzella L.K.,
Ford M. et al. The role and mechanism of erythrocyte invasion by
Francisella tularensis. Front.Cell.Infect.Microbiol. 2017; 7, Article
00173. DOI: 10.3389/fcimb.2017.00173.
39. Lafeuillade B., Eb F., Ounnoughene N., Petermann R., Daurat
G., Huyghe G. et al. Residual risk and rectrospective analysis of
transfusion-transmitted bacterial infection reported by the French
National Hemovigilance Network from 2000 to 2008. Transfusion.
2015; 55: 636-46.
40. Gosiewski T., Flis A., Sroka A., Kedzierska A., Pietrzyk A., Kedzierska
J. et al. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and
blood culture methods in detection and identification of bacteria and
fungi in blood of patients with sepsis. BMC Microbiol. 2014; 14: 313.
41. Castillo D.J., Rifkin R., Cowan D.A., Potgieter M. The healthy human
blood microbiome: fact or fiction? Front. Cell. Infect. Microbiol. 2019;
9, Article 00148. DOI: 10.3389/fcimb.2019.00148.
42.Tan C.C.S., Ko K.K.K., Chen H., Liu J., Loh M. No evidence for a
common blood microbiome based on a population study of 9,770
healthy human. Nature Microbiology. 2023; 8 : 973-85.
43. Rozenberga M., Saksis R., Elbere I., Birzniece L., Briviba M., Konrade
I. et al. Identification of the composition, stability, and origin of blood
microbiome in humans. Research Square. 2022; Article 2019063.
DOI: 10.21203/ rs.3.rs — 2019063\v1.
44. D’Aquila P., Giacconi R., Malavolta M., Piacenza F., Burkle A.,
Villanueva M.M. et al. Microbiome in blood samples from the general
population recruited in the MARK-AGE Project: A pilot study.
Frontiers in Microbiology. 2021; 12. Article 707515. DOI: 10.3389/
fmicb.2021.707515.
45. Ono S., Tsujimoto H., Yamauchi A., Hiraki Sh., Takayama E.,
Mochizuki H. Detection of microbial DNA in the blood of surgical
patients for diagnosing bacterial translocation. World J. Surg. 2005;
29: 535-9.
46. Costello E.K., Lauber C.L., Hamady M., Fierer N., Gordon J.I., Knight
R. Bacterial community variation in human body habitats across space
and time. Science. 2009; 326(5960): 1694-7.
47. Tommaso N.D., Santopaolo F., Gasbarrini A., Ponziani F.R. The gutvascular barrier as a new protagonist in intestinal and extraintestinal
diseases. Int. J. Mol. Sci. 2023; 24: 1470.
48. Balzan S., Quadros C.A., Cleva R., Ziberstein B., Cecconello I.
Bacterial translocation: overview of mechanisms and clinical impact.
J. Gastroenterology Hepatology. 2007; 22: 464-71.
49. Sciarra F., Franceschini E., Campolo F., Venneri M.A. The diagnostic
potential of the human blood microbiome: are we dreaming or awake?
Int. J. Mol. Sci. 2023; 24 : 10422. DOI: 10.3390/ ijms 241310422.
50. Demirci M., Saribas A.S., Siadat S.D., Kocazeybek B.S. Editorial:
blood microbiote in health and disease. Front.Cell.Infect.Microbiol.
2023; 13, Article 1187247. DOI: 10.3389/fcimb.2023.1187247.
51. Khan Ik., Khan Im., Usman M., Jianye Z., Wei Z., Zhiqiang L. et
al. Analysis of the blood bacterial composition of patients with
acute coronary syndrome and chronic coronary syndrome. Front.
Cell. Infect. Microbiol. 2022; 12. Article 943808. DOI: 10.3389/
fcimb.2022.943808.
52. Goraya M.U., Gu L., Mannan A., Wang G., Li R., Deng H. Human
circulating bacteria and dysbiosis in non-infectious diseases. Front.
Cell.Infect.Microbiol. 2022; 12, Article 932702. DOI: 10.3389/
fcimb.2022.932702.
53. Katola V.M. On the translocation of bacteria in practically healthy
people. Byulleten` fiziologii i patologii dykhaniya. 2016; 61: 102-6.
(in Russian)
54. Epstein S.S. The phenomenon of microbial uncultivability. Curr. Opin.
Microbiol. 2013; 16: 636-42.
55. Kirn T.J., Weinstein M.P. Update on blood cultures: how to obtain,
process, report and interpret. Clin. Microbiol. Infect. 2013; 19: 513-20.
56. Pohlod D.J., Mattman L.H. Tunstall L. Structures suggesting cell-walldeficien forms detected in circulating erythrocytes by fluorochrome
staining. Appl. Microbiol. 1972; 23(2): 262-7.
57. Katola V.M. On blood infection in normal and pathological conditions.
Byulleten` fiziologii i patologii dykhaniya. 2013; 47: 111-6. (in Russian)
58. Lehtiniemi J., Karhunen P.J., Goebeler S., Nikkari S., Nikkari S.T. Identification of different bacterial Dnas in human coronary arteries. Eur. J.
Clin. Invest. 2005; 35: 13-6.