Список литературы
1. Taubes G. The science of obesity: what do we really know about what makes us fat? An essay by Gary Taubes. BMJ. 2013;346:f1050. doi: 10.1136/bmj.f1050
2. Gruzdeva O., Borodkina D., Uchasova E., Dyleva Y., Barbarash O. Localization of fat depots and cardiovascular risk 11 medical and health sciences 1103 clinical sciences. Lipids in Health and Disease. 2018; 17 (1): 218. doi: 10.1186/s12944-018-0856-8
3. Груздева О.В., Акбашева О.Е., Бородкина Д.А., Каретникова В.Н., Дылева Ю.А., Коков А.Н. и др. Взаимосвязь показателей ожирения и адипокинов с риском развития сахарного диабета 2 типа через год после перенесенного инфаркта миокарда. Российский кардиологический журнал. 2015; 20(4): 59-67.
4. Gesta S., Tseng Y.H., Kahn C.R. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242e56. doi: 10.1016/j.cell.2007.10.004
5. Vienberg S., Geiger J., Madsen S., Dalgaard L.T. MicroRNAs in metabolism. Acta Physiol. (Oxf). 2017;219:346e61. doi: 10.1111/apha.12681
6. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008;9:102-14. doi: 10.1038/nrg2290
7. Siomi H., Siomi M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell. 2010;38:323-32. doi: 10.1016/j.molcel.2010.03.013
8. Rand T.A., Ginalski K., Grishin N.V., Wang X. Biochemical identification of Argonaute 2 as the sole protein required for RNAinduced silencing complex activity. Proc. Natl. Acad. Sci. USA. 2004;101:14385–9. doi: 10.1038/nature08170
9. Karbiener M., Fischer C., Nowitsch S., Opriessnig P., Papak C., Ailhaud G. et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem. Biophys. Res. Commun. 2009;390:247e51. doi: 10.1016/j.bbrc.2009.09.098
10. Kraus M., Greither T., Wenzel C., Bräuer-Hartmann D., Wabitsch M., Behre H.M. Inhibition of adipogenic differentiation of human SGBS preadipocytes by androgenregulated microRNA miR-375. Mol. Cell. Endocrinol. 2015;414:177e85. doi: 10.1016/j.mce.2015.07.026
11. Li H., Li T., Wang S., Wei J., Fan J., Li J. et al. MiR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem. Cell Res. 2013;10: 313e24. doi: 10.1016/j.scr.2012.11.007
12. Li M., Liu Z., Zhang Z., Liu G., Sun S., Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol. Chem. 2015;396:235e44. doi: 10.1515/hsz-2014-0241
13. Peng Y., Li H., Li X., Yu S., Xiang H., Penget J. et al. MicroRNA-215 impairs adipocyte differentiation and co-represses FNDC3B and CTNNBIP1. Int. J. Biochem. Cell. Biol. 2016. 79:104-12. doi: 10.1016/j.biocel.2016.08.014
14. Giordano A., Frontini A., Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat. Rev. Drug. Discov. 2016;15:405e24. doi: 10.1038/nrd.2016.31
15. Karbiener M., Pisani D.F., Frontini A., Oberreiter L.M., Lang E., Vegiopoulos A. et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem. Cells. 2014;32:1578e90. doi: 10.1002/stem.1603
16. Feuermann Y., Kang K., Gavrilova O., Haetscher N., Jang S.J., Yooet K.H. et al. MiR-193b and miR-365-1 are not required for the development and function of brown fat in the mouse. RNA Biol. 2013;10:1807e14. doi: 10.4161/rna.27239
17. Wu Y., Zuo J., Zhang Y., Xie Y., Hu F., Chenet L. et al. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem. Biophys. Res. Commun. 2013;438: 575e80. doi: 10.1016/j.bbrc.2013.08.016
18. Meakin P.J., Harper A.J., Hamilton D.L., Gallagher J., McNeilly A.D., Burgess L.A. et al. Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem. J. 2012;441:285e96. doi: 10.1042/BJ20110512
19. Chou C-F, Lin Y-Y, Wang H-K., Zhu X., Giovarelli M., Briata P. et al. KSRP ablation enhances brown fat gene program in white adipose tissue through reduced miR-150 expression. Diabetes. 2014;63:2949e61. doi: 10.2337/db13-1901
20. Sun L., Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metab. Clin. Exp. 2014;63: 272e82. doi: 10.1016/j.metabol.2013.10.004
21. Hall A.M., Kou K., Chen Z., Pietka T.A., Kumar M., Korenblatet K.M. et al. Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J. Lipid. Res. 2012;53:990–999. doi: 10.1194/jlr.P025536
22. Reis F.C., Branquinho J.L., Brandao B.B., Guerra B.A., Silva I.D., Frontini A. et al. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging (Albany NY). 2016;8:1201-22.
23. Ortega F.J., Moreno-Navarrete J.M., Pardo G., Sabater M., Hummel M., Ferrer A. et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One. 2010;5(2):e9022. doi: 10.1371/journal.pone.0009022
24. Kristensen M.M., Davidsen P.K., Vigelsо A., Hansen C.N., Jensen L.J., Jessen N.et al. miRNAs in human subcutaneous adipose tissue: effects of weight loss induced by hypocaloric diet and exercise. Obes. (Silver Spring). 2017; 25(3):572-80. doi: 10.1002/oby.21765
25. Meerson A., Traurig M., Ossowski V., Fleming J.M., Mullins M., Baier L.J. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-a. Diabetologia. 2013;56:1971e9. doi: 10.1007/s00125-013-2950-9
26. Wang J., Guan X., Guo F., Zhou J., Chang A., Sun B. et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013;4:e845. doi: 10.1038/cddis.2013.356
27. Martinelli R., Nardelli C., Pilone V., Buonomo T., Liguori R., Castanò I., et al. miR-519d overexpression is associated with human obesity. Obesity. 2010;18:2170e6. doi: 10.1038/oby.2009.474
28. Kornfeld J.W., Baitzel C., Könner A.C., Nicholls H.T., Vogt M.C., Herrmanns K., et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494:111e5. doi: 10.1038/nature11793
29. Mysore R., Zhou Y., Sädevirta S., Savolainen-Peltonen H., Haridas P.A.N., Soronen J. et al. MicroRNA-192 impairs adipocyte triglyceride storage. Biochim. Biophys. Acta. 2016;1861:342-51. doi: 10.1016/j.bbalip.2015.12.019
30. Parra P., Serra F., Palou A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One. 2010;5:e13005. doi: 10.1371/journal.pone.0013005
31. Ortega F.J., Mercader J.M., Moreno-Navarrete J.M., Rovira O., Guerra E., Esteve E. et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375-83. doi: 10.2337/dc13-1847
32. Villard A., Marchand L., Thivolet C., Rome S. Diagnostic value of cell-free circulating microRNAs for obesity and type 2 diabetes: a meta-analysis. J. Mol. Biomark. Diagn. 2015;6(6):251. doi: 10.4172/2155-9929.1000251
33. Carreras-Badosa G., Bonmatí A., Ortega F.J., Mercader J.-M., Guindo-Martínez M., Torrents D. et al. Altered circulating miRNA expression profile in pregestational and gestational obesity. J. Clin. Endocrinol. Metab. 2015;100:E1446-56. doi: 10.1210/jc.2015-2872
34. Iacomino G., Russo P., Stillitano I., Lauria F., Marena P., Ahrens W. et al. Circulating microRNAs are deregulated in overweight/obese children: preliminary results of the I.Family study. Genes Nutr. 2016;11:7. doi: 10.1186/s12263-016-0525-3
35. Masotti A., Baldassarre A., Fabrizi M. Olivero G., Loreti M.C., Giammariaet P. et al. Oral glucose tolerance test unravels circulating miRNAs associated with insulin resistance in obese preschoolers. Pediatr. Obes. 2016;2(3):229-38. doi: 10.1111/ijpo.12133
36. Can U., Buyukinan M., Yerlikaya F.H. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr. Obes. 2016;11:228-34. doi: 10.1111/ijpo.12050
37. Gaudet A.D., Fonken L.K., Gushchina L.V., Aubrecht T.G., Maurya S.K., Periasamy M. et al. miR-155 deletion in female mice prevents diet-induced obesity. Sci. Rep. 2016;6: 22862. doi: 10.1038/srep22862
38. Price N.L., Holtrup B., Kwei S.L., Wabitsch M., Rodeheffer M., Bianchini L.et al. SREBP-1c/MicroRNA 33b genomic loci control adipocyte differentiation. Mol. Cell Biol. 2016;36:1180-93. doi: 10.1128/MCB.00745-15
39. Huang-Doran I., Zhang C.Y., Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol. Metab. 2017;28:3-18. doi: 10.1016/j.tem.2016.10.003
40. Heneghan H.M., Miller N., McAnena O.J., O’Brien T., Kerinet M.J. et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab. 2011;96:E846-50. doi: 10.1210/jc.2010-2701
41. Ameling S., Kacprowski T., Chilukoti R.K., Ma lsch C., Liebscher V., Suhre K. et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a populationbased study. BMC Med. Genomics. 2015;8:61. doi: 10.1186/s12920-015-0136-7
42. Chen Y., Buyel J.J., Hanssen M.J. 2016b. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat. Commun. 2016;7:11420. doi: 10.1038/ncomms11420