МИКРОРНК: РОЛЬ В РАЗВИТИИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ, ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ
ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
Представлен анализ опубликованных данных о диагностической роли микроРНК при развитии сердечно-сосудистых заболеваний. МикроРНК представляют собой класс малых некодирующих РНК, регулирующих экспрессию генов и влияющих на различные функции клетки. Описаны современные методы исследования микроРНК. Проанализированы данные об изменении их концентрации при ишемической болезни сердца, сердечной недостаточности и других заболеваниях. В настоящее время накопление клинических данных о роли этих биомаркёров позволит определить диагностическую и прогностическую значимость отдельных микроРНК или их панелей при сердечно-сосудистых заболеваниях.
Об авторах
ФГБУ «НМИЦ ТИО им.ак. В.И. Шумакова» Минздрава РФ 123182, Москва, Россия канд.мед. наук, вед. науч. сотр. отдела регуляторных механизмов в трансплантологии dim_vel@mail.ru
Список литературы
Moran A.E., Forouzanfar M.H., Roth G.A. et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014; 129:1483-92
Щербо С.Н., Щербо Д.С., Кралин М.Ю. Биомаркеры персонализированной медицины часть 5. Некодирующие РНК и МикроРНК. Медицинский алфавит. 2015; 3(11): 5-11.
Долгов В.В., Шевченко О.П., Шевченко А.О. Биомаркеры в лабораторной диагностике. М.- Тверь: ООО «Издательство «Триада»; 2014.
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75: 843-854.
Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 2011; 12: 846-60.
Chekulaeva M., Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009; Jun;21(3): 452-60.
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009; Jan 23;136(2):215-33.
Adams B.D., Kasinski A.L., Slack F.J. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014; Aug 18; 24(16):762-76.
Guay C., Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 2013; Sep; 9(9): 513-21.
Zhang J., Li S., Li L., Li M, Guo C., Yao J., Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015 Feb;13(1):17-24.
Hantzsch M., Tolios A., Beutner F., Nagel D., Thiery J., Teupser D. et al. Comparison of whole blood RNA preservation tubes and novel generation RNA extraction kits for analysis of mRNA and MiRNA profiles. PLoS One 2014;9:e113298.
Hunter M.P., Ismail N., Zhang X., Aguda B.D., Lee E.J., Yu L. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008;3:e3694.
Wang K., Yuan Y., Cho J.H., McClarty S., Baxter D., Galas D.J. Comparing the MicroRNA spectrum between serum and plasma. PLoS One 2012;7:e41561.
Varallyay E., Burgyan J., Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes. Methods. 2007;43: 140-5.
Zhou W.J., Chen Y., Corn R.M. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal. Chem. 2011; 83: 3897-902.
Mestdagh P., Hartmann N., Baeriswyl L., Andreasen D., Bernard N., Chen C. et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods. 2014; 11: 809-15.
Hardikar A.A., Farr R.J., Joglekar M.V. Circulating microRNAs: understanding the limits for quantitative measurement by realtime PCR. J. Am. Heart Assoc. 2014; 3: e000792.
Kaudewitz D., Zampetaki A., Mayr M. MicroRNA biomarkers for coronary artery disease? Curr Atheroscler. Rep. 2015; 17:70.
Shah R., Tanriverdi K., Levy D., Larson M., Gerstein M., Mick E. et al. Discordant expression of circulating microRNA from cellular and extracellular sources. PLoS One 2016 ; 11:e0153691.
Olivieri F., Antonicelli R., Lorenzi M., D’Alessandra Y., Lazzarini R., Santini G. et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int.J. Cardiol. 2013;167: 531-6.
Li C., Fang Z., Jiang T., Zhang Q., Liu C., Zhang C. et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med. Genomics. 2013; 6:16.
Marfella R., Di Filippo C., Potenza N., Sardu C., Rizzo M.R., Siniscalchi M. et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur. J. Heart Fail. 2013;15: 1277-88.
Cakmak H.A., Coskunpinar E., Ikitimur B., Barman H.A., Karadag B., Tiryakioglu N.O. et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J. Cardiovasc. Med. (Hagerstown) 2015;16:431-7.
Liu Z., Zhou C., Liu Y., Wang S., Ye P, Miao X. et al. The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One 2012;7:e44906.
Kessler T., Erdmann J., Vilne B., Bruse P., Kurowski V., Diemert P. et al. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. J. Transl. Med. 2016; 14: 120.
Zampetaki A., Mayr M. MicroRNAs in vascular and metabolic disease. Circ. Res. 2012; 110: 508-22.
Menghini R., Stohr R., Federici M. MicroRNAs in vascular aging and atherosclerosis. Ageing Res. Rev. 2014;17c: 68-78.
Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc. Cell 2013; 5: 2.
Leistner D.M., Boeckel J.N., Reis S.M., Thome C.E., De Rosa R., Keller T. et al. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur. Heart J. 2016; 37: 1738-49.
Gidlof O., Smith J.G., Miyazu K., Gilje P., Spencer A., Blomquist S. et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord. 2013; 13: 12.
Jaeger C., Wildi K., Twerenbold R., Reichlin T., RubiniGimenez M., Neuhaus J.D., et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. Heart J. 2016; 171:92-102.e1-5.
Oerlemans M.I., Mosterd A., Dekker M.S., de Vrey E.A., van Mil A., Pasterkamp G., et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol. Med. 2012;4: 1176-85.
Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M. et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 2011; 4: 446-54.
Widera C., Gupta S.K., Lorenzen J.M., Bang C., Bauersachs J., Bethmann K. et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell Cardiol. 2011; 51: 872-5.
Шевченко О.П., Аксенова А.В., Улыбышева А.А., Можейко Н.П., Никитина Е.А., Орлов В.И., Стаханова Е.А., Шевченко А.О. Сравнительный анализ диагностической значимости панелей биомаркеров у реципиентов сердца в отдаленные сроки после трансплантации. Вестник трансплантологии и искусственных органов. 2017; 19(2): 27-33
Meder B., Keller A., Vogel B., Haas J., Sedaghat-Hamedani F., Kayvanpour E. et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res. Cardiol. 2011;106: 13-23.
Bye A., Rosjo H., Nauman J., Silva G.J., Follestad T., Omland T. et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals — the HUNT study. J. Mol. Cell Cardiol. 2016; 97:162-8.
Karakas M., Schulte C., Appelbaum S., Ojeda F., Lackner K.J., Munzel T. et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart J. 2017; Feb 14;38(7): 516-23.
Zampetaki A., Willeit P., Tilling L., Drozdov I., Prokopi M., Renard J.M. et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol. 2012; 60: 290-9.
Schulte C., Molz S., Appelbaum S., Karakas M., Ojeda F., Lau D.M. et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One. 2015;10: e0145930.
Niculescu L.S., Simionescu N., Sanda G.M., Carnuta M.G., Stancu C.S., Popescu A.C. et al. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS One. 2015;10: e0140958.
Hoekstra M., van der Lans C.A., Halvorsen B., Gullestad L., Kuiper J., Aukrust P. et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem. Biophys. Res. Commun. 2010; 394: 792-7.
Zeller T., Keller T., Ojeda F., Reichlin T., Twerenbold R., Tzikas S. et al. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J. 2014; 35: 2106-14.
Zile M.R., Mehurg S.M., Arroyo J.E., Stroud R.E., DeSantis S.M., Spinale F.G. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ. Cardiovasc. Genet. 2011; 4: 614-9.
Corsten M.F., Dennert R., Jochems S., Kuznetsova T., Devaux Y., Hofstra L. et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 2010;3: 499-506.
Schulte C., Westermann D., Blankenberg S., Zeller T. Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J. Cardiol. 2015; 7: 843-60.
Жиров И.В., Кочетов А.Г., Засеева А.В., Лянг О.В., Скворцов А.А., Абрамов А.А., Гимадиев Р.Р., Масенко В.П., Терещенко С.Н. МикроРНКвдиагностике хронической сердечной недостаточности: состояние проблемы и результаты пилотного исследования. Системные гипертензии. 2016; 13(1): 39-46
McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Bohm M., Dickstein K. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2012; 14: 803-69
Шевченко О.П., Улыбышева А.А., Великий Д.А., Шевченко А.О. ST2 при отторжении трансплантированного сердца. Вестник трансплантологии и искусственных органов. 2015; 17(4): 90-4
Goren Y., Kushnir M., Zafrir B., Tabak S., Lewis B.S., Amir O. Serum levels of microRNAs in patients with heart failure. Eur. J. Heart Fail. 2012; 14: 147-54.
Ellis K.L., Cameron V.A., Troughton R.W., Frampton C.M., Ellmers L.J., Richards A.M. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail. 2013;15: 1138-47.
Vogel B., Keller A., Frese K.S., Leidinger P., Sedaghat-Hamedani F., Kayvanpour E. et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur. Heart J. 2013; 34: 2812-22.
Dong S., Ma W., Hao B., Hu F., Yan L., Yan X. et al. MicroRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 2014;7: 565-74.
Wong L.L., Armugam A., Sepramaniam S., Karolina D.S., Lim K.Y., Lim J.Y. et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2015;17: 393-404.
Watson C.J., Gupta S.K., O’Connell E., Thum S., Glezeva N., Fendrich J. et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail. 2015; 17: 405-15.
Satoh M., Minami Y., Takahashi Y., Tabuchi T., Nakamura M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J. Card. Fail. 2010; 16: 404-10.
Bruno N., terMaaten J.M., Ovchinnikova E.S., Vegter E.L., Valente M.A., van der Meer P. et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int. J. Cardiol. 2016; 203: 564-9.
Sukma Dewi I., Hollander Z., Lam K.K., McManus J.W., Tebbutt S.J., Ng R.T. et al. Association of serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One. 2017; 12(1): e0170842.
Duong Van Huyen J.P., Tible M., Gay A., Guillemain R., Aubert O., Varnous S. et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 2014; 35(45): 3194-202.
Singh N., Heggermont W., Fieuws S., Vanhaecke J. et al. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J. Heart Lung. Transplant. 2015; 34: 1376-84.