Список литературы
Yang Y., Higgins C.H., Rehman I., Galvao K.N., Brito I.L., Bicalho M.L. et al. Genomic diversity, virulence, and antimicrobial resistance of Klebsiella pneumoniae strains from cows and humans. Appl. Environ. Microbiol. 2019; 85(6). https://doi.org/10.1128/AEM.02654-18
Pendleton J.N., Gorman S.P., Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti. Infect. Ther. 2013; 11(3): 297-30. https://doi.org/10.1586/eri.13.12
Wyres K.L., Holt K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018; 45: 131-9. https://doi.org/10.1016/j.mib.2018.04.004
Partridge S.R., Kwong S.M., Firth N., Jensen S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018; 31(4): e00088-17. https://doi.org/10.1128/CMR.00088-17
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44(14): 6614-24. https://doi.org/10.1093/nar/gkw569
Francisco A.P., Bugalho M., Ramirez M., Carriço J.A. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC BioI. 2009; 10: 152. https://doi.org/10.1186/1471-2105-10-152
Diancourt L., Passet V., Verhoef J., Grimont P.A., Brisse S. Multilocus Sequence Typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005; 43: 4178-82. https://doi.org/10.1128/JCM.43.8.4178-4182.2005
Chen Y.T., Chang H.Y., Lai Y.C., Pan C.C., Tsai S.F., Peng H.L. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004; 337: 189-98. https://doi.org/10.1016/j.gene.2004.05.008
Wu K.M., Li L.H., Yan J.J., Tsao N., Liao T.L., Tsai H.C. et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol. 2009; 191(14): 4492-01. https://doi.org/10.1186/s13756-019-0596-1
Shelenkov A., Mikhaylova Y., Yanushevich Y., Samoilov A., Petrova L., Fomina V. et al. Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical Klebsiella pneumoniae isolates. Antibiotics (Basel). 2020; 9(5): 1-15. https://doi.org/10.3390/antibiotics9050261
Алексеева А.Е., Бруснигина Н.Ф., Гординская Н.А. Мобилом клинических карбапенем-устойчивых изолятов Klebsiella pneumoniae. Генетика. 2020; 56(3): 272-81. https://doi.org/10.31857/S0016675820030030
Poirel L., Bonnin R.A., Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob. Agents Chemother. 2012; 56(1): 559-62. https://doi.org/10.1128/AAC.05289-11
Colclough A.L., Alav I., Whittle E.E., Pugh H.L., Darby E.M., Legood S.W. et al. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol. 2020; 15: 143-57. https://doi.org/10.2217/fmb-2019-0235
Ogawa W., Onishi M., Ni R., Tsuchiya T., Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene. 2012; 498(2): 177-82. https://doi.org/10.1016/j.gene.2012.02.008
Du D., Wang-Kan X., Neuberger A., van Veen H.W., Pos K.M., Piddock L.J.V. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 2018; 16(9): 523-39. https://doi.org/10.1038/s41579-018-0048-6
Kumar S., Mukherjee M.M., Varela M.F. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily.Int. J. Bacteriol. 2013; 2013: 204141. https://doi.org/10.1155/2013/204141
Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020; 18(2): 67-3. https://doi.org/10.1038/s41579-019-0299-x
Newire E., Aydin A., Juma S., Enne V.I., Roberts A.P. Identification of a Type IV-A CRISPR-Cas System located exclusively on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Front. Microbiol. 2020; 11: 1937. https://doi.org/10.3389/fmicb.2020.01937
Fursova N.K., Astashkin E.I., Gabrielyan N.I., Novikova T.S., Fedyukina G.N., Kubanova et al. Emergence of five genetic lines ST395 NDM-1, ST13 OXA-48, ST3346 OXA-48, ST39 CTX-M-14, and novel ST3551 OXA-48 of multidrug-resistant clinical Klebsiella pneumoniae in Russia. Microb. Drug Resist. 2020; 26(8): 924-33. https://doi.org/10.1089/mdr.2019.0289
Maida C., Bonura C., Geraci D., Graziano G., Carattoli A., Rizzo A. et al. Outbreak of ST395 KPC-Producing Klebsiella pneumoniae in a Neonatal Intensive Care Unit in Palermo, Italy. Infect. Control Hosp. Epidemiol. 2018; 39(4): 496-8. https://doi.org/10.1017/ice.2017.267
Muggeo A., Guillard T., Klein F., Reffuveille F., François C., Babosan A. et al. Spread of Klebsiella pneumoniae ST395 non-susceptible to carbapenems and resistant to fluoroquinolones in North-Eastern France. J. Glob. Antimicrob. Resist. 2018; 13: 98-103. https://doi.org/10.1016/j.jgar.2017.10.023
Li L., Yuan Z., Chen D., Xie X., Zhang B. Clinical and microbiological characteristics of invasive and hypervirulent Klebsiella pneumoniae infections in a teaching hospital in China. Infect. Drug Resist. 2020; 13: 4395-403. https://doi.org/10.2147/IDR.S282982
Mendonça N., Ferreira E., Louro D. Antibiotic Resistance Surveillance Program in Portugal (ARSIP) Participants, Caniça M. Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal.Int. J. Antimicrob. Agents. 2009; 34(1): 29-37. https://doi.org/10.1016/j.ijantimicag.2008.11.014
Marcoleta A.E., Berríos-Pastén C., Nuñez G., Monasterio O., Lagos R. Klebsiella pneumoniae asparagine tDNAs are integration hotspots for different genomic islands encoding Microcin E492 production determinants and other putative virulence factors present in hypervirulent strains. Front. Microbiol. 2016; 7(849). https://doi.org/10.3389/fmicb.2016.00849
Fasciana T., Gentile B., Aquilina M., Ciammaruconi A., Mascarella C., Anselmo A. et al. Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. BMC Infect. Dis. 2019; 19: 2019. https://doi.org/10.1186/s12879-019-4565-3
Ma L.C., Fang C.T., Lee C.Z., Shun C.T., Wang J.T. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J. Infect. Dis. 2005; 192(1): 117-28. https://doi.org/10.1086/430619
Novais A., Cantón R., Moreira R., Peixe L., Baquero F., Coque T.M. Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -3, and -32) plasmids. Antimicrob. Agents Chemother. 2007; 51(2): 796-9. https://doi.org/10.1128/AAC.01070-06
Dolejska M., Villa L., Hasman H., Hansen L., Carattoli A. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J. Antimicrob. Chemother. 2013; 68(2): 333-9. https://doi.org/10.1093/jac/dks387
Carattoli A., Seiffert S.N., Schwendener S., Perreten V., Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS ONE. 2015; 10(5): e0123063. https://doi.org/10.1371/journal.pone.0123063
Schwanbeck J., Bohne W., Hasdemir U., Groß U., Pfeifer Y., Bunk B. et al. Detection of a new resistance-mediating plasmid chimera in a blaOXA-48-positive Klebsiella pneumoniae strain at a German University Hospital. Microorganisms. 2021; 9(4): 720. https://doi.org/10.3390/microorganisms9040720
Uz Zaman T., Aldrees M., Al Johani S.M., Alrodayyan M., Aldughashem F.A., Balkhy H.H. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia.Int. J. Infect. Dis. 2014; 28: 186-92. https://doi.org/10.1016/j.ijid.2014.05.021
Ruiz E., Ocampo-Sosa A.A., Rezusta A., Revillo M.J., Román E., Torres C. et al. Acquisition of carbapenem resistance in multiresistant Klebsiella pneumoniae strains harbouring blaCTX-M-15, qnrS1 and aac(6’)-Ib-cr genes. J. Med. Microbiol. 2012; 61(5): 672-7. https://doi.org/10.1099/jmm.0.038083-0
Schneiders T., Amyes S.G., Levy S.B. Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob. Agents Chemother. 2003; 47(9): 2831-7. https://doi.org/10.1128/AAC.47.9.2831-2837.2003
Hentschke M., Wolters M., Sobottka I., Rohde H., Aepfelbacher M. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob. Agents Chemother. 2010; 54: 2720-3. https://doi.org/10.1128/AAC.00085-10
Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 2015; 16: 247. https://doi.org/10.1186/s13059-015-0816-9
Newire E., Aydin A., Juma S., Enne V.I., Roberts A.P. Identification of a Type IV-A CRISPR-Cas System located exclusively on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Front. Microbiol. 2020; 11: 1937. https://doi.org/10.3389/fmicb.2020.01937
Pinilla-Redondo R., Mayo-Muñoz D., Russel J., Garrett R.A., Randau L., Sørensen S.J. et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res. 2020; 48(4): 2000-12. https://doi.org/10.1093/nar/gkz1197