Аннотация
Амфотерицин В (АТВ), представитель полиеновых макролидов, несмотря на более чем 60-летнюю историю использования, остается золотым стандартом для лечения тяжелых микозов. Терапия липосомальной (Л-АТВ) и дезоксихолатной (Д-АТВ) лекарственными формами АТВ характеризуется разным дозированием, токсическими проявлениями, сочетаемостью с экстракорпоральными методами лечения, требующими выяснения особенностей их фармакокинетики (ФК) и мониторинга уровня в крови пациентов.
Материал и методы. На основе ранее полученных антител разработан иммуноферментный анализ (ИФА) для определения АТВ в сыворотке крови. Чувствительность ИФА (IC50) и предел обнаружения ATB составили 6,3 и 0,1 нг/мл, соответственно. Широкий диапазон анализа 1,0–49,2 нг/мл позволил измерять терапевтические концентрации препарата в пределах 0,2-80,0 мг/л с точностью 81,9–105,8 %. Для определения общего уровня антимикотика в сыворотке крови в качестве пробоподготовки предложена простая процедура деструкции липосом и депротеинизации образцов.
Результаты. С помощью разработанного метода проведено фармакокинетическое исследование у пациентов в критическом состоянии с инвазивным микозом, у которых терапия Л-АТВ/Д-АТВ сопровождалась экстракорпоральной мембранной оксигенацией (ЭКМО).
Заключение. Предложенный ИФА пригоден в качестве средства за контролем уровня АТВ при назначении как дезоксихолатной, так и липосомальной форм препарата.
Annotation
Amphotericin B (ATB), a representative of polyene macrolides, despite more than 60 years of use, remains the gold standard for the treatment of severe fungal infections. Therapy with liposomal (L-ATB) and deoxycholate (D-ATB) ATB formulations is characterized by different dosages, toxic manifestations and compatibility with extracorporeal methods of treatment, requiring clarification of their pharmacokinetics (PK) and monitoring of the level in the blood of patients.
Materials and methods. Based on previously obtained antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed to quantify ATB in blood serum. The sensitivity of ELISA (IC50) and the detection limit of ATB were 6.3 and 0.1 ng/ml, respectively. A wide dynamic range of the assay of 1.0–49.2 ng/ml made it possible to measure therapeutic concentrations of the drug in the range of 0.2–80.0 mg/l with an accuracy of 81.9–105.8 %. To determine the total level of antifungal in blood serum, a simple procedure of liposome destruction and sample deproteinization is proposed as a sample preparation.
Results. Using the developed method, a pharmacokinetic study was conducted in critically ill patients with invasive mycosis, in whom L-ATB/D-ATB therapy was accompanied by extracorporeal membrane oxygenation (ECMO).
Conclusion. The proposed ELISA is suitable as a means for monitoring the ATB level when prescribing both deoxycholate and liposomal forms of the drug.
Key words: therapeutic drug monitoring; immunoassay; amphotericin B; invasive mycosis; ECMO
Список литературы
ЛИТЕРАТУРА (пп. 1-13, 15-22 см. REFERENCES)
14. Гальвидис И.А., Суровой Ю.А., Алимов А.И., Царенко С.В., Соболев П.Д., Шарипов В.Р., Буркин М.А. Иммуноферментный анализ для изучения фармакокинетики нагрузочной дозы тигециклина у пациентов с сепсисом. Клиническая лабораторная диагностика. 2025; 70 (8): 551-7. DOI: 10.51620/0869-2084-2025-70-8-551-557.
REFERENCES
1. Cavassin F.B., Baú-Carneiro J.L., Vilas-Boas R.R., Queiroz-Telles F. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infectious diseases and therapy. 2021; 10(1):115-47. DOI: 10.1007/s40121-020-00382-7.
2. Brüggemann R., Jensen G., Lass-Flörl C. Liposomal amphotericin B—the past. Journal of Antimicrobial Chemotherapy. 2022; 77(Suppl. 2):ii3-ii10. DOI: 10.1093/jac/dkac351.
3. Chen L., Su Y., Xiong X.-Z. Rhizopus microsporus lung infection in an immunocompetent patient successfully treated with amphotericin B: A case report. World journal of clinical cases. 2021; 9(35):11108. DOI: 10.12998/wjcc.v9.i35.11108.
4. Maertens J., Pagano L., Azoulay E., Warris A. Liposomal amphotericin B—the present. Journal of Antimicrobial Chemotherapy. 2022; 77(Suppl.2):ii11-ii20. DOI: 10.1093/jac/dkac352.
5. Bussini L., Bartoletti M., Bassetti M., Cortegiani A., De Pascale G., De Rosa F.G. et al. Role of liposomal amphotericin B in intensive care unit: an expert opinion paper. Journal of Anesthesia, Analgesia and Critical Care. 2025; 5(1):23. DOI: 10.1186/s44158-025-00236-z.
6. Lee J.S.F., Cohen R.M., Khan R.A., Burry J., Casas E.C., Chung H.Y. et al. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. The Lancet Global Health. 2024; 12(9):e1552-e9. DOI: 10.1016/S2214-109X(24)00225-0.
7. Tong B., Wang J., Zhang Y., Liu Y., Wang J., Duan L. et al. A real-world study based on the FAERS database evaluating adverse drug reactions in three amphotericin B lipid formulations. Journal of Pharmaceutical Policy and Practice. 2025; 18(1):2514155. DOI: 10.1080/20523211.2025.2514155.
8. Lai T., Yeo C.-Y., Rockliff B., Stokes M., Kim H.Y., Marais B.J. et al. Therapeutic drug monitoring of liposomal amphotericin B in children. Are we there yet? A systematic review. Journal of Antimicrobial Chemotherapy. 2024; 79(4):703-11. DOI: 10.1093/jac/dkae003.
9. Stone N.R., Bicanic T., Salim R., Hope W. Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016; 76:485-500. DOI: 10.1007/s40265-016-0538-7.
10. Jin Y., Wu B., Gong Y., Wei H., Ma R., Wang Y. et al. A convenient and rapid LC-MS/MS method for determination of free and liposomal amphotericin B in human plasma by simultaneous separation using SPE. Journal of Pharmaceutical and Biomedical Analysis. 2025;262:116884. DOI: 10.1016/j.jpba.2025.116884.
11. Branick K., Taylor M.J., Trump M.W., Wall G.C. Apparent interference with extracorporeal membrane oxygenation by liposomal amphotericin B in a patient with disseminated blastomycosis receiving continuous renal replacement therapy. American Journal of Health-System Pharmacy. 2019;76(11):810-3. DOI: 10.1093/ajhp/zxz054.
12. Marena G.D., Ramos MAdS, Bauab T.M., Chorilli M. A critical review of analytical methods for quantification of amphotericin B in biological samples and pharmaceutical formulations. Critical Reviews in Analytical Chemistry. 2022;52(3):555-76. DOI: 10.1080/10408347.2020.1811947.
13. Burkin M.A., Surovoy Y.A., Arzumanian V.G., Galvidis I.A. Development and application of amphotericin B immunoassay for pharmacokinetic studies and therapeutic drug monitoring in critically ill patients. Journal of Pharmaceutical and Biomedical Analysis. 2022:114875. DOI: 10.1016/j.jpba.2022.114875.
14. Galvidis I.A., Surovoy Yu.A., Alimov A.I., Tsarenko S.V., Sharipov V.R., Sobolev P.D., Burkin M.A. Enzyme-linked immunosorbent assay used to study the pharmacokinetics of tigecycline loading dose in patients with sepsis. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2025; 70(8):551-7. DOI: 10.51620/0869-2084-2025-70-8-551-557. (in Russian)
15. Van Daele R., de Beer Y., Croes S., Aarnoutse R., Wauters J., Maertens J. et al. Ultra-performance liquid chromatography for quantification of amphotericin B plasma concentrations after use of liposomal amphotericin B. Journal of Antimicrobial Chemotherapy. 2021;76(4):961-6. DOI: 10.1093/jac/dkaa515.
16. Food and Drug Administration. AmBisome®(amphotericin B) liposome for injection.
17. Zhao Y., Seelhammer T.G., Barreto E.F., Wilson J.W. Altered pharmacokinetics and dosing of liposomal amphotericin B and isavuconazole during extracorporeal membrane oxygenation. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2020; 40(1):89-95. DOI: 10.1002/phar.2348.
18. Foulquier J., Berneau P., Frérou A., Verdier M., Saint-Marcoux F., Petitcollin A. et al. Liposomal amphotericin B pharmacokinetics in a patient treated with extracorporeal membrane oxygenation. Médecine et Maladies Infectieuses. 2019;49(1):69-71. DOI: 10.1016/j.medmal.2018.10.011.
19. Bellmann R., Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017; 45:737-79. DOI: 10.1007/s15010-017-1042-z.
20. Hertzog J.H., Brackett E., Sale M., Hauser G.J., Dalton H.J. Amphotericin B pharmacokinetics during extracorporea/membrane oxygenation: A case report. The Journal of ExtraCorporeal Technology. 1996; 28(2):94-8. DOI: 10.1051/ject/199628294.
21. Jendoubi A., Pressiat C., De Roux Q., Hulin A., Ghaleh B., Tissier R. et al. The impact of extracorporeal membrane oxygenation on antifungal pharmacokinetics: a systematic review. International Journal of Antimicrobial Agents. 2024; 63(2):107078. DOI: 10.1016/j.ijantimicag.2023.107078.
22. Kim M., Mahmood M., Estes L.L., Wilson J.W., Martin N.J., Marcus J.E. et al. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Critical Care. 2024; 28(1):326. DOI: 10.1186/s13054-024-05101-z.