Список литературы
Титов В.Н. Биологические функции (экзотрофия, гомеостаз, эндоэкология), биологические реакции (экскреция, воспаление, трансцитоз) и патогенез артериальной гипертонии. М.-Тверь: Изд-во «Триада»; 2009.
Свердлов Е.Д. Системная биология и персонализированная медицина. Быть или не быть? Российский физиологический журнал. 2014; 100(5): 505-23.
Титов В.Н., Рожкова Т.А., Амелюшкина В.А. Жирные кислоты, триглицериды, гипертриглицеридемия, гипергликемия и инсулин (патогенез, диагностика, профилактика, основы лечения). М.: ИНФРА-М; 2015.
Lee M.J., Wu Y., Fried S.K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects. Med. 2013; 34(1): 1-11.
Walch L., Čopič A., Jackson C.L. Fatty acid metabolism meets organelle dynamics. Dev. Cell. 2015; 32(6): 657-8.
Gille A., Frik T., Bodor F.T., Ahmed K., Offermanns S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 2008; 48: 79-106.
Hellmuth C., Demmelmair H., Schmitt I., Peissner W., Blüher M., Koletzko B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One. 2013; 8(10): e74927.
Ahlstrom C., Peletier L.A., Jansson-Löfmark R., Gabrielsson J. Feedback modeling of non-esterified fatty acids in rats after nicotinic acid infusions. J. Pharmacokinet. Pharmacodyn. 2011; 38(1): 1-24.
Carlson L.A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005; 258(2): 94-114.
Ruparelia N., Digby J.E., Choudhury R.P. Effects of niacin on atherosclerosis and vascular function. Curr. Opin. Cardiol. 2011; 26(1): 66-70.
Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends. Pharmacol. Sci. 2006; 27(7): 384-90.
Титов В.Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Сахарный диабет. М.: ИНФРА-М; 2014
Levy G. Integration of pharmacokinetics, pharmacodynamics and toxicokineticsin rational drug development, the case for preclinical pharmacodynamics. New York: Plenum Press. 1993.
Bodor E.T., Offermanns S. Nicotinic acid: an old drug with a promising future. Br. J. Pharmacol. 2008; 153 (Suppl. 1): S68-75.
Tapani S., Almquist J., Leander J., Ahlström C., Peletier L.A., Jirstrand M., Gabrielsson J. Joint feedback analysis modeling of nonesterified fatty acids in obese Zucker rats and normal Sprague-Dawley rats after different routes of administration of nicotinic acid. J. Pharm. Sci. 2014; 103(8): 2571-84.
Tunaru S., Kero J., Schaub A., Wufka C., Blaukat A., Pfeffer K. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 2003; 9(3): 352-5.
Wise A., Foord S.M., Foord S.M., Fraser N.J., Barnes A.A., Elshourbagy N., Eilert M. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003; 278(11): 9869-74.
Frayn K.N., Shadid S., Hamlani R., Humphreys S.M., Clark M.L., Fielding B.A. et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol. 1994; 266(3Pt1): E308-17.
Koutsari C., Ali A.H. Mundi M.S., Jensen M.D. Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: quantitative measures and implications for body fat distribution. Diabetes. 2011; 60(8): 2032-40.
Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 2003; 31(6): 1120-4.
Ferramosca A., Zara V. Dietary fat and hepatic lipogenesis: mitochondrial citrate carrier as a sensor of metabolic changes. Adv. Nutr. 2014; 5(3): 217-25.
Mas S., Martinez-Pinna R., Martín-Ventura J.L., Pérez R., Gomez-Garre D., Ortiz A. et al. Local non-esterified fatty acids correlate with inflammation in atheroma plaques of patients with type 2 diabetes. Diabetes. 2010; 59(6): 1292-301.
Oh Y.T., Oh K.S., Choi Y.M., Jokiaho A., Donovan C., Choi S. et al. Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2011; 300(6): E1012-21.
Poynten A.M., Gan S.K., Kriketos A.D., O’Sullivan A., Kelly J.J., Ellis B.A. et al. Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metabolism. 2003; 52(6): 699-704.
Kroon T., Kiellstedt A., Gabrielsson J., Oakes N,D. Dosing profile profoundly influences nicotinic acid’s ability to improve metabolic control in rats. J. Lipid. Res. 2015; 56(9): 1679-90.
Wang Y., Wang P.Y., Takashi K. Chronic effects of different non-esterified fatty acids on pancreatic islets of rats. Endocrine. 2006; 29(1): 169-73.
Hara N., Yamada T., ShibataT., Osago H., Hashimoto T., Tsuchiya M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. 2007; 282(34): 24574-82.
Digby J.E., Martinez F., Jefferson A., Ruparelia N., Chai J., Wamil M. et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2012; 32(3): 669-76.
Florian J.P., Pawelczyk J.A. Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin. Sci. (Lond). 2009; 118(1): 61-9.
Kamanna V.S., Kashyap M.L. Mechanism of action of niacin. Am. J. Cardiol. 2008; 101(8A): 20B-26B.
Титов В.Н. Филогенетическая теория общей патологии. Патогенез болезней цивилизации. Атеросклероз. М.: ИНФРА-М; 2014
O’Neill M., Watt M.J., Heigenhauser G.J., Spriet L.L. Effects of reduced free fatty acid availability on hormone-sensitive lipase activity in human skeletal muscle during aerobic exercise. J. Appl. Physiol. (1985). 2004; 97(5): 1938-45.
Watt M.J., Holmes A.G., Steinberg G.R., Mesa J.L., Kemp B.E., Febbraio M.A. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2004; 287(1): E120-7.
Daniele G., Eldor R., Merovci A., Clarke G.D., Xiong J., Tripathy D. et al. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes. 2014; 63(8): 2812-20.
Lim J.H., Lim J.H., Gerhart-Hines Z., Dominy J.E., Lee Y., Kim S., Tabata M. et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J. Biol. Chem. 2013; 288(10): 7117-26.
Hirabara S.M., Silveira L.R., Abdulkader F., Carvalho C.R., Procopio J., Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism. J. Cell. Physiol. 2007; 210(1): 7-15.
Брокерхоф Ч., Дженсен Р. Липолитические ферменты. М.: Мир; 1978.
Шноль С.Э. Физико-химические факторы биологической эволюции. М.:Издательство «Наука»; 1979.