НОВЫЕ И ПОТЕНЦИАЛЬНЫЕ БИОМАРКЁРЫ ОСТРОГО ПОВРЕЖДЕНИЯ ПОЧЕК
ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
В обзоре представлены данные литературы, посвящённой изучению эффективности новых и потенциальных биомаркёров для ранней диагностики острого повреждения почек. Ранние неинвазивные и рентабельные биомаркёры повреждения почек жизненно важны для определения тактики, эффективности и прогноза лечения. Их использование будет способствовать не только снижению заболеваемости и смертности, но и уменьшению расходов на здравоохранение.
Об авторах
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр РАН 634012, Томск, Россия д-р мед. наук, зав. лаб. радионуклидных методов исследования zhvesnina@mail.ru
Список литературы
Смирнов А.В., Добронравов В.А., Бодур-Ооржак А.Ш., Зверьков Р.В., Ларионова В.И., Глазков П.Б. и др. Эпидемиология и факторы риска хронических болезней почек: региональный уровень общей проблемы. Терапевтический архив. 2005; 77(6): 20-7
de Portu S., Citarella A., Cammarota S., Menditto E., Mantovani L. Pharmacoeconomic consequences of Losartan therapy in patients undergoing diabetic end stage renal disease in EU and USA. Clin. Exp. Hypertens. 2011; 33(3): 174-8
Колесников С.В., Борисов А.С. Биомаркеры острого почечного повреждения: клинические аспекты. Нефрология и диализ. 2013; 15(3): 184-90
Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr. Opin. Pediatr. 2011; 23(2): 194-200.
Cai L., Rubin J., Han W., Venge P., Xu S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 2010; 5(12): 2229-35.
Вельков В.В., Резникова О.И. Новые возможности для лабораторной диагностики хронической и острой ренальной дисфункции. Клинико-лабораторный консилиум. 2011; 3: 26-30
Charlton J., Portilla D., Okusa M. A basic science view of acute kidney injury biomarkers. Nephrol. Dial. Transplant. 2014; 29(7): 1301-11.
Haase M., Devarajan P., Haase-Fielitz A., Bellomo R., Cruz D., Wagener G. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 2011; 57(17): 1752-61.
Wagener G., Jan M., Kim M., Mori K., Barasch J. Sladen R., Lee H. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006; 105(3): 485-91.
Fadel F., Abdel Rahman A., Mohamed M., Habib S., Ibrahim M., Sleem Z. et al. Plasma neutrophil gelatinase-associated lipocalin as an early biomarker for prediction of acute kidney injury after cardio-pulmonary bypass in pediatric cardiac surgery. Arch. Med. Sci. 2012; 8(2): 250-5.
Choi K., Lee J., Kim E., Baik S., Seo H., Choi D. et al. Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur. J. Endocrinol. 2008; 158(2): 203-7.
Bachorzewska-Gajewska H., Malyszko J., Sitniewska E., Malyszko J., Pawlak K., Mysliwiec M. et al. Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press. Res. 2007; 30: 408-15.
Li Y., Zhu M., Xia Q., Wang S., Qian J., Lu R. et al. Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation. Biomarkers. 2012; 17(4): 336-42.
Parikh C., Jani A., Mishra J., Ma Q., Kelly C., Barasch J. et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am. J. Transplant. 2006; 6(7): 1639-45.
Wasilewska A., Zoch-Zwierz W., Taranta-Janusz K., Michaluk-Skutnik J. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr. Nephrol. 2010; 25(5): 889-97.
Vesnina Zh., Lishmanov Yu., Alexandrova E., Nesterov E. Evaluation of nephroprotective efficacy of hypoxic preconditioning in patients undergoing coronary artery bypass surgery. Cardiorenal Med. 2016; 6: 328-36.
Bolignano D., Basile G., Parisi P., Coppolino G., Nicocia G., Buemi M. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res. 2009; 12(1): 7-14.
Haase M., Bellomo R., Devarajan P., Schlattmann P., Haase-Fielitz A. NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 2009; 54(6): 1012-24.
Dharnidharka V., Kwon C., Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am. J. Kidney Dis. 2002; 40(2): 221-26.
Rickli H., Benou K., Ammann P. Fehr T., Brunner-La Rocca H., Petridis H. et al. Time course of Сystanin levels in comparison with serum creatinine after application of radiocontrast media. Clin. Nephrol. 2004; 61(2): 98-102.
Lassus J., Harjola V. Cystatin C: a step forward in assessing kidney function and cardiovascular risk. Heart Fail. Rev. 2012; 17(2): 251-61.
Herget-Rosenthal S., Marggraf G., Hüsing J., Göring F., Pietruck F., Janssen O. et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004; 66(3): 1115-22.
Briguori C., Visconti G., Rivera N., Focaccio A., Golia B., Giannone R. et al. Cystatin C and contrast induced acute kidney injury. Circulation. 2010; 121(19): 2117-22.
Eriksen B., Mathisen U., Melsom T., Ingebretsen O., Jenssen T., Njølstad I. et al. Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney Int. 2010; 78(12): 1305-11.
Моисеев В.С., Мухин Н.А., Кобалава Ж.Д. Виллевальде С.В., Ефремовцева М.А., Козловская Л.В. и др. Основные положения проекта рекомендаций по оценке функционального состояния почек. Кардиоваскулярная терапия и профилактика. 2008; 4: 8-20
Tschoeke S., Oberholzer A., Moldawer L. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit.Med. Care. 2006; 34(4): 1225-33.
Melnikov V., Ecder T., Fantuzzi G., Siegmund B., Lucia M., Dinarello C. et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J. Clin. Invest. 2001; 107(9): 1145-52.
He H., Li W., Qian W., Zhao X., Wang L., Yu Y. et al. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp. Ther. Med. 2014; 8(4): 1263-6.
Parikh С., Mishra J., Thiessen-Philbrook H., Dursun B., Ma Q., Kelly C. et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006; 70(1): 199-203.
Liu Y., Guo W., Zhang J., Xu C., Yu S., Mao Z. et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am. J. Kidney Dis. 2013; 62(6): 1058-67.
Siew E., Ikizler T., Gebretsadik T., Shintani A., Wickersham N., Bossert F. et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin. J. Am. Soc. Nephrol. 2010; 5(8): 1497-1505.
He H., Li W., Qian W., Zhao X., Wang L., Yu Y. et al. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp.Ther. Med. 2014; 8(4): 1263-6.
Bulent Gul C., Gullulu M., Oral B., Aydinlar A., Oz O., Budak F. et al. Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention? Clin. Biochem. 2008; 41: 544-7.
Skalova S. The diagnostic role of urinary N-acetyl-β-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica. 2005; 48: 75-80.
de Geus H., Betjes M., Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin. Kidney J. 2012; 5(2): 102-8.
Liangos O., Perianayagam M., Vaidya V., Han W., Wald R., Tighiouart H. et al. Urinary N-Acetylbeta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adheres outcomes in acute renal failure. J. Am. Soc. Nephrol. 2007; 18(3): 904-12.
Westhuyzen J., Endre Z., Reece G., Reith D., Saltissi D., Morgan T. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol. Dial. Transplant. 2003; 18(3): 543-51.
Chew S., Lins R., Daelemans R., Nuyts G., De Broe M. Urinary enzymes in acute renal failure. Nephrol. Dial. Transplant. 1993; 8(6): 507-11.
Ren L., Ji J., Fang Y., Jiang S., Lin Y., Bo J. et al. Assessment of urinary N-acetyl-betaglucosaminidase as an early marker of contrast-induced nephropathy. J. Int. Med. Res. 2011; 39(2): 647-53.
Mohkam M., Ghafari A. The role of urinary N-Acetyl-beta-D-glucosaminidase in diagnosis of kidney diseases. J. Ped. Nephrology. 2015; 3: 84-91.
Ichimura T., Asseldonk E., Humphreys B., Gunaratnam L., Duffield J., Bonventre J. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 2008; 118(5): 1657-68.
Han W., Bailly V., Abichandani R., Thadhani R., Bonventre J. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002; 62(1): 237-44.
Bonventre J.V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant. 2009; 24(11): 3265-8.
Vijayasimha M., Vijaya Padma V., Mujumdar S., Satyanarayana P. Kidney injury molecule-1: a urinary biomarker for contrast induced acute kidney injury. Adv. Life Sci. Technol. 2013; 15: 33-40.
Han W., Wagener G., Zhu Y., Wang S., Lee H. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol. 2009; 4(5): 873-82.
Han W., Waikar S., Johnson A., Betensky R., Dent C., Devarajan P., Bonventre J. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008; 73(7): 863-9.
Damman K., Ng Kam Chuen M., MacFadyen R. Lip G., Gaze D., Collinson P. et al. Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J. Am. Coll Cardiol. 2011; 57(22):2233-41.
Sweetser D., Heuckeroth R., Gordon J. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu. Rev. Nutr. 1987; 7: 337-59.
Kamijo A., Sugaya T., Hikawa A., Okada M., Okumura F., Yamanouchi M. et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am. J. Pathol. 2004; 165(4): 1243-55.
Negishi K., Noiri E., Doi K., Maeda-Mamiya R., Sugaya T., Portilla D., Fujita T. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am. J. Pathol. 2009; 174(4): 1154-9.
Nakamura T., Sugaya T., Koide H. Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion. Shoсk. 2009; 31(5): 454-9.
Manabe K., Kamihata H., Motohiro M., Senoo T., Yoshida S., Iwasaka T. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury. Eur. J. Clin. Invest. 2012; 42(5): 557-63.
Katagiri D., Doi K., Honda K., Negishi K., Fujita T., Hisagi M. et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann. Thorac. Surg. 2012; 93(2): 577-83.
Doi K., Noiri E., Maeda-Mamiya R., Ishii T., Negishi K., Hamasaki Y. et al. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury. Crit. Care Med. 2010; 38(10): 2037-42.
Nozue T., Michishita I., Mizuguchi I. Predictive value of serum cystatin C, β2-microglobulin, and urinary liver-type fatty acid-binding protein on the development of contrast-induced nephropathy. Cardiovasc. Interv. Ther. 2010; 25(2): 85-90.
Bachorzewska-Gajewska H., Poniatowski B., Dobrzycki S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv. Med. Sci. 2009; 54(2): 221-4.
Ferguson M., Vaidya V., Waikar S., Collings F., Sunderland K., Gioules C., Bonventre J. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int. 2010; 77(8): 708-14.
Levey A., Stevens L., Schmid C., Zhang Y., Castro A. 3rd, Feldman H. et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009; 150(9): 604-12.
Muramatsu T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J. Biochem. 2002; 132(3): 359-71.
Sato W., Kadomatsu K., Yuzawa Y., Muramatsu H., Hotta N., Matsuo S., Muramatsu T. Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J. Immunol. 2001; 167(6): 3463-9.
Malyszko J., Bachorzewska-Gajewska H., Koc-Zorawska E., Malyszko J., Kobus G., Dobrzycki S. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed. Res. Int. 2015; 2015: 879509.
Weber J., Baxter D., Zhang S., Huang D., Huang K., Lee M. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010; 56(11): 1733-41.
Mall C., Rocke D., Durbin-Johnson B., Weiss R. Stability of miRNA in human urine supports its biomarker potential. Biomark. Med. 2013; 7(4): 623-31.
Li Y., Jing Y., Hao J., Frankfort N., Zhou X., Shen B. et al. MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell. 2013; 4(11): 813-9.
Du J., Cao X., Zou L., Chen Y., Guo J., Chen Z. et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One. 2013; 8(5): e63390.
Bellinger M., Bean J., Rader M., Heinz-Taheny K., Nunes J., Haas J., Michael L., Rekhter M. Concordant changes of plasma and kidney microRNA in the early stages of acute kidney injury: time course in a mouse model of bilateral renal ischemia-reperfusion. PLoS One. 2014; 9(4): e93297.
Aguado-Fraile E., Ramos E., Conde E., Rodríguez M., Martín-Gómez L., Lietor A. et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury. PLoS One. 2015; 10(6): e0127175.
Sun S., Zhang T., Ding D., Zhang W., Wang X., Sun Z. et al. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury. J. Am. Heart Assoc. 2016; 5(8): e004138.
Kito N., Endo K., Ikesue M., Weng H., Iwai N. miRNA profiles of tubular cells: diagnosis of kidney injury. Biomed. Res. Int. 2015; 2015: 465479.
Westhuyzen J., Endre Z., Reece G., Reith D., Saltissi D., Morgan T. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol. Dial. Transplant. 2003; 18(3): 543-51.
Rouse R., Stewart S., Thompson K., Zhang J. Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media. Toxicol. Pathol. 2013; 41(4): 662-80.
Parvez Z., Ramamurthy S., Patel N., Moncada R. Enzyme markers of contrast media-induced renal failure. Invest. Radiol. 1990; 25(suppl 1): S133-S134.
Oksuz F., Yarlioglues M., Cay S., Celik I., Mendi M., Kurtul A. et al. Predictive value of gamma-glutamyl transferase levels for contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention. Am. J. Cardiol. 2015; 116(5): 711-6.
Kashani K., Al-Khafaji A., Ardiles T., Artigas A., Bagshaw S., Bell M. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care. 2013; 17(1): R25.
Hizoh I., Strater J., Schick C., Kubler W., Haller C. Radiocontrastinduced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol. Dial. Transplant. 1998; 13(4): 911-8.
Wetz A., Richardt E., Wand S., Kunze N., Schotola H., Quintel M. et al. Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? Crit. Care. 2015; 19: 3.
Gocze I., Koch M., Renner P., Zeman F., Graf B., Dahlke M. et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS One. 2015; 10(3): e0120863.
Bell M., Larsson A., Venge P., Bellomo R., Martensson J. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis. Markers. 2015; 2015: 158658.