Аннотация
Уромодулин является белком, играющим важную роль в регулировании водного и ионного баланса в организме. В норме он присутствует в моче в высокой концентрации и может служить индикатором ряда патологических состояний. Стандартным подходом к оценке концентрации уромодулина является иммуноферментный анализ, однако склонность уромодулина к полимеризации приводит к тому, что результаты анализа в существенной степени зависят от конкретной процедуры пробоподготовки. В связи с этим нами предложен новый подход к измерению концентрации уромодулина в моче, основанный на измерении концентрации общего белка в образцах мочи до и после фильтрации с использованием фильтра 300 кДа. Данный метод основан на биофизических свойствах уромодулина, в частности, на его способности образовывать высокомолекулярные олигомеры. Концентрация полимеризованного уромодулина рассчитывается как разность концентраций белка до и после фильтрации. Преимущество данного подхода заключается в его простоте и доступности, результаты сравнительных исследований показали эквивалентность предложенного метода и иммуноферментного анализа. Таким образом, новый подход к измерению концентрации уромодулина с использованием фильтрации может стать важным инструментом для медицинских исследований и диагностики заболеваний.
Annotation
Uromodulin is the protein that plays an important role in a regulation of water and ion balance in a body. Normally, it is present in a urine in high concentration and can be an indicator of a number of pathological conditions. The standard approach to assess the concentration of uromodulin is the enzyme immunoassay. However, the tendency of uromodulin to polymerize leads to the fact that the results of the analysis significantly depend on the specific sample preparation procedure. In this regard, we have proposed the new approach to measure the concentration of the uromodulin in the urine. It is based on measuring the concentration of total protein in urine samples before and after filtration with a 300 kDa filter. This method is based on the biophysical properties of uromodulin, in particular, on its ability to form high-molecular oligomers. The concentration of polymerized uromodulin is calculated as the difference in protein concentrations before and after filtration. The advantage of this approach is in its simplicity and accessibility. The results of comparative studies have shown the equivalence of the proposed method and the enzyme immunoassay. Thus, a new approach to measure the concentration of uromodulin using filtration can become an important tool for medical researches and diagnosis of diseases.
Key words: uromodulin; protein concentration; filtration; electrophoresis; capillary electrophoresis.
Список литературы
1. Koyner J.L. Vaidya V.S., Bennett M.R., Ma Q., Worcester E., Akhter S.A. et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2010; 5 (12): 2154-65.
2. Rampoldi L., Scolari F., Amoroso A., Ghiggeri G., Devuyst O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 2011; 80 (4): 338-47.
3. Renigunta A., Renigunta V., Saritas T., Decher N., Mutig K., Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 2011; 286 (3): 2224-35.
4. Mutig K., Kahl T., Saritas T., Godes M., Persson P., Bates J. et al. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J. Biol. Chem. 2011; 286 (34): 30200-10.
5. Bollée G., Dahan K., Flamant M., Morinière V., Pawtowski A., Heidet, L., et al.. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 2011; 6 (10): 2429-38.
6. Padmanabhan S., Melander O., Johnson T., Di Blasio A.M., Lee W.K., Gentilini D. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010; 6 (10): e1001177.
7. Köttgen A., Glazer N.L., Dehghan A., Hwang S.J., Katz R., Li M. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009; 41 (6): 712-7.
8. Chambers J.C., Zhang W., Lord G.M., van der Harst P., Lawlor D.A., Sehmi J.S. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 2010; 42 (5): 373-5.
9. Devuyst O., Olinger E., Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Na.t Rev. Nephrol. 2017; 13 (9): 525-44.
10. Schaeffer C., Devuyst O., Rampoldi L. Uromodulin: Roles in Health and Disease. Annu. Rev. Physiol. 2021; 83: 477-501.
11. Micanovic R., LaFavers K., Garimella P.S., Wu X.R., El-Achkar T.M. Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol. Dial. Transplant. 2020; 35 (1): 33-43.
12. LaFavers K.A., Micanovic R., Sabo A.R., Maghak L.A., El-Achkar T.M. Evolving Concepts in Uromodulin Biology, Physiology, and Its Role in Disease: a Tale of Two Forms. Hypertension. 2022; 79 (11): 2409-18.
13. Brunati M., Perucca S., Han L., Cattaneo A., Consolato F., Andolfo A. et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife. 2015; 4: e08887.
14. Jovine L., Qi H., Williams Z., Litscher E., Wassarman P.M. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat. Cell. Biol. 2002; 4 (6): 457-61.
15. Wiggins R.C. Uromucoid (Tamm-Horsfall glycoprotein) forms different polymeric arrangements on a filter surface under different physicochemical conditions. Clin. Chim. Acta. 1987; 162 (3): 329-40.
16. Stanisich J., Zyla D., Afanasyev P., Xu J., Kipp A., Olinger E. et al. The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism. ELife. 2020; 9: e60265.
17. Schaeffer C., Santambrogio S., Perucca S., Casari G., Rampoldi L. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell. 2009; 20 (2): 589-99.
18. Youhanna S., Weber J., Beaujean V., Glaudemans B., Sobek J., Devuyst O. Determination of uromodulin in human urine: influence of storage and processing. Nephrol. Dial. Transplant. 2014; 29 (1): 136-45.
19. Kobayashi K., Fukuoka S. Conditions for solubilization of Tamm-Horsfall protein/uromodulin in human urine and establishment of a sensitive and accurate enzyme-linked immunosorbent assay (ELISA) method. Arch. Biochem. Biophys. 2001; 388 (1): 113-20.
20. Brunisholz M., Geniteau-Legendre M., Ronco P.M., Moullier P., Pontillon F., Richet G. et al. Characterization of monoclonal antibodies specific for human Tamm-Horsfall protein. Kidney Int. 1986; 29 (5): 971-6.
21. Akesson I., Haugen H., Enger E. Quantification of uromucoid: a simplified method. Scand. J. Clin. Lab. Invest. 1978; 38 (1): 93-5.
22. Uto I., Ishimatsu T., Hirayama H., Ueda S., Tsuruta J., Kambara T. Determination of urinary Tamm-Horsfall protein by ELISA using a maleimide method for enzyme-antibody conjugation. J. Immunol. Methods. 1991; 138 (1): 87-94.
23. Torffvit O., Agardh C.D., Kjellsson B., Wieslander J. Tubular secretion of Tamm-Horsfall protein in type 1 (insulin-dependent) diabetes mellitus using a simplified enzyme linked immunoassay. Clin. Chim. Acta. 1992; 205 (1-2): 31-41.
24. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248-54.
25. Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1 (8476): 307-10.
26. Karun K.M., Puranik A. BA.plot: An R function for Bland-Altman analysis.
Clin. Epidemiol. Glob. Health. 2021; 12: 100831.
27. Li H., Kostel S., DiMartino S., Gheinani A.H., Froehlich J., Lee R. Uromodulin Isolation and Its N-Glycosylation Analysis by NanoLC-MS/MS. J. Proteome Res. 2021; 20 (5): 2662-72.
28. Scott R.P, Quaggin S.E. Review series: The cell biology of renal filtration. J. Cell Biol. 2015; 209(2):199-210.