Аннотация
Цель работы — определить клинически значимые виды возбудителей, вызывающих инфекционные осложнения в онкологическом стационаре; сравнение возбудителей у хирургических и у нехирургических больных; определение резистентности,
основные типы карбапенемаз грамотрицательных бактерий. Изучено 2782 изолята (01.01.2022-30.04.2023). В таксономической структуре лидируют грамотрицательные палочки (60,7%), за ними следуют грамположительные кокки (24,2%) и
грибы (15,1%). Проблемными патогенами являются K. pneumoniae (21,8%) и E. coli (20,9%). Установлен высокий уровень резистентности ко многим антимикробным препаратам разных классов. 53,7% грамотрицательных бактерий продуцировали
карбапенемазы. Карбапенемазы основных возбудителей инфекционных осложнений у онкологических больных определяли для
штаммов, резистентных in vitro к меропенему (для P. aeruginosa) и с МИК >0,125 (для Enterobacterales). P. aeruginosa продуцирует в основном тип VIM и, в отдельных случаях, IMP-1 и NDM. Штаммы E. coli характеризуются разными типами
карбапенемаз, причём в одном случае идентифицировано сразу два типа — КPC и NDM. Среди штаммов E. coli реже всего выявлялись продуценты карбапенемаз. Основная масса карбапенемаз обнаружена у штаммов K. pneumoniae, преимущественно
типа OXA-48 отдельно или в сочетании с NDM или KPC. Способность к сверхпродукции бета-лактамаз у изолятов S. aureus
выявлена в 91,7% случаев, MRSA — более 11%; устойчивость к ванкомицину 3,2% и линезолиду 0,5%. Устойчивость E. faecium
значительно выше, чем у E. faecalis. Основным видом рода Candida является C. albicans (70,5%), устойчивые изоляты пре
Annotation
Objective: to determine clinically significant types of pathogens causing infectious complications in oncology hospital; comparison
of pathogens of surgical and non-surgical patients; definition of resistance, main types of carbapenemases in gram-negative bacteria.
2782 isolates were studied (01.01.2022-30.04.2023). In the taxonomic structure, gram-negative rods (60.7%) are in the lead, followed
by gram-positive cocci (24.2%) and fungi (15.1%). K. pneumoniae (21.8%) and E. coli (20.9%) are main. A high level of resistance
to many antimicrobial drugs of different classes was established. 53.7% of gram-negative bacteria produced carbapenemases. Carbapenemases produced by causative agents of infectious complications in cancer patients were determined if strains were resistant in
vitro to meropenem (for P. aeruginosa) or MIC >0.125 (for Enterobacterales). P. aeruginosa produced mainly the VIM type and rarely
IMP-1 and NDM. E. coli strains are characterized by different types of carbapenemases, and in one case two types were identified at
once — KPC and NDM. Among E. coli strains, carbapenemase producers were the least frequently detected. The bulk of carbapenemases are found in K. pneumoniae strains, mainly the OXA-48 type alone or in combination with NDM or KPC. The ability to overproduce
betalactamases in S. aureus isolates was detected in 91.7% of cases, MRSA was more than 11%; resistance to Vancomycin 3.2% and
Linezolid 0.5%. The resistance for E. faecium is significantly higher compared for E. faecalis. The main species of the genus Candida
is C. albicans (70.5%), resistant isolates mainly belonged to this species.
Key words: nosocomial infections; bacterial infections; etiology, antibiotic resistance; cancer
Список литературы
1. Rolston K.V. Infections in cancer patients with solid tumors: a review. Infect. Dis. Ther. 2017; 6: 69-83. DOI: 10.1007/s40121-017-0146-1.
2. Jiang A.M., Shi X., Liu N., Gao H., Ren M.D., Zheng X.Q. et al. Nosocomial infections due to multidrug-resistant bacteria in cancer patients: a six-year retrospective study of an oncology Center in Western China. BMC Infect. Dis. 2020 Jun 29; 20(1):452. DOI: 10.1186/s12879-020-05181-6.
3. Bhat S., Muthunatarajan S., Mulki S.S., Bhat K.A., Kotian K.H. Bacterial infection among cancer patients: analysis of isolates and antibiotic sensitivity pattern. Int. J. Microbiol. 2021; 8883700. DOI: 10.1155/2021/8883700.
4. Zheng Y., Chen Y., Yu K., Yang Y., Wang X., Yang X. et al. Fatal Infections Among Cancer Patients: A Population-Based Study in the United States. Infect. Dis. Ther. 2021 Jun; 10(2):871-95. DOI: 10.1007/s40121-021-00433-7.
5. Zembower T.R. Epidemiology of infections in cancer patients. Cancer Treat. Res. 2014; 161:43- 89. DOI: 10.1007/978-3-319-04220-6_2.
6. O’Dowd A. Death certificates should record antimicrobial resistance as cause of deaths, says CMO. BMJ. 2018; 362:k3832. DOI: 10.1136/k3832.
7. Ye M., Gu X., Han Y., Jin M., Ren T. Gram-negative bacteria facilitate tumor outgrowth and metastasis by promoting lipid synthesis in lung cancer patients. J. Thorac. Dis. 2016; 8(8):1943-55. DOI: 10.21037/jtd.2016.06.47.
8. Sun M., Bai Y., Zhao S., Liu X., Gao Y., Wang L., Liu B. et al. Gramnegative bacteria facilitate tumor progression through TLR4/IL-33 pathway in patients with non-small-cell lung cancer. Oncotarget. 2018; 9(17):13462-73. DOI: 10.18632/oncotarget.24008.
9. Delgado A., Guddati A.K. Infections in Hospitalized Cancer Patients. World J. Oncol. 2021 Dec; 12(6):195-205. DOI: 10.14740/wjon1410.
10. Rice L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008; 197: 1079–81. DOI: 10.1086/533452.
11. Nanayakkara A.K., Boucher H.W., Fowler V.G., Jezek A., Outterson K., Greenberg D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA Cancer J. Clin. 2021; 71: 488–504. DOI: 10.3322/caac.21697.
12. Worku M., Belay G., Tigabu A. Bacterial profile and antimicrobial susceptibility patterns in cancer patients. PLoS One. 2022; 17:e0266919.DOI: 10.1371/journal.pone.0266919.
13. Yusuf K., Sampath V., Umar S. Bacterial infections and cancer: exploring this association and its implications for cancer patients. Int. J. Mol. Sci. 2023 Feb 4; 24(4):3110. DOI: 10.3390/ijms24043110.
14. Katip W., Uitrakul S., Oberdorfer P. Clinical outcomes and nephrotoxicity of colistin loading dose for treatment of extensively drugresistant. Infect. Drug Resist. 2017; 10:293–8. DOI: 10.2147/IDR.S144314.
15. Moubareck C.A., Halat D.H. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020; 9:119. DOI: 10.3390/antibiotics9030119.
16. Oliveira C.S., Torres M.T., Pedron C.N., Andrade V.B., Silva P.I., Silva F.D. et al. Synthetic peptide derived from scorpion venom displays minimal toxicity and anti-infective activity in an animal model. ACS Infect. Dis. 2021; 7:2736–45. DOI: 10.1021/acsinfecdis.1c00261.
17. Ramirez D., Giron M. Enterobacter Infections. 2023 Jun 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 32644722.
18. Awadh H., Chaftari A.M., Khalil M., Fares J., Jiang Y., Deeba R. et al. Management of enterococcal central line-associated bloodstream
infections in patients with cancer. BMC Infect. Dis. 2021; 21: 643. DOI: 10.1186/s12879-021-06328-9.
19. Said M.S., Tirthani E., Lesho E. Enterococcus Infections. 2022 May 2. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 33620836.
20. Sidorenko S.V., Tishkov V.I. Molecular basis of antibiotic resistance. Uspekhi biologicheskoy khimii. 2004; 44:263-306. (in Russian)
21. Shkurat M.A., Pokudina I.O., Battalov D.V. Resistance of microorganisms to antimicrobial drugs. Electronic periodical publication of the Southern Federal University “Zhivye I biokosnye sistemy”. 2014; 10. URL: http://jbks.ru/archive/issue10/article-10. (in Russian)
22. Gusarov V.G., Nesterova E.E., Lashenkova N.N., Petrova N.V., Silaeva N.A., Tertitskaya A.B. et al. Changes in antibiotic resistance of nosocomial microflora: results of implementing a strategy for monitoring antimicrobial therapy in a multidisciplinary hospital. Epidemiologiya i infektsionnye bolezni. 2015; 20(5):11–8. DOI: 10.17816/
EID40946. (in Russian)
23. Romashov O.M., Ni O.G., Bykov A.O., Kruglov A.N., Procenko D.N., Tyurin I.N. Assessing the resistance of microorganisms in a multidisciplinary hospital and modernizing antimicrobial treatment regimens in the context of the COVID19 infection pandemic. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2021; 23(3):293-303. DOI: 10.36488/cmac.2021.3.293-303. (in Russian)
24. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report). Accessed February 25; 2021. URL: cdc.gov/drugresistance/biggestthreats.html.
25. Bush K., Bradford P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020 Feb 26; 33(2):e00047-19. DOI: 10.1128/CMR.00047-19.
26. World Health Organization. Global action plan on antimicrobial resis tance. 2021. Accessed February 25, 2021. URL: who.int/publi cations/i/item/97892 41509763.
27. Otter J.A., Burgess P., Davies F., Mookerjee S., Singleton J., Gilchrist M. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: an economic evaluation from a hospital perspective. Clin. Microbiol. Infect. 2017; 23:188–96. DOI: 10.1016/j.cmi.2016.10.005.
28. Hobson C.A., Pierrat G., Tenaillon O., Bonacorsi S., Bercot B., Jaouen E. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob. Agents Chemother. 2022 Sep 20; 66(9):e0044722. DOI: 10.1128/aac.00447-22.
29. Teillant A., Gandra S., Barter D., Morgan D.J., Laxminarayan R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: a literature review and modelling study. Lancet Infect. Dis. 2015; 15:1429-37. DOI: 10.1016/S1473- 3099(15)00270-4.
30. Danielsen A.S., Franconeri L., Page S., Myhre A.E., Tornes R.A., Kacelnik O., Clinical outcomes of antimicrobial resistance in cancer patients: a systematic review of multivariable models. BMC Infect. Dis. 2023 Apr 18; 23(1):247. DOI: 10.1186/s12879-023-08182-3.
31. Puerta-Alcalde P., Cardozo C., Suárez-Lledó M., Rodríguez-Núñez O., Morata L., Fehér C. et al. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship deescalation strategies. Clin. Microbiol. Infect. 2019 Apr; 25(4):447-53.DOI: 10.1016/j.cmi.2018.07.026.
32. AMRmap online platform: https://amrmap.ru. Available from 2016. (in Russian)
33. Breidenstein E.B., de la Fuente-Nunez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8):419-26. DOI: 10.1016/j.tim.2011.04.005.
34. Gordinskaya N.A., Boriskina E.V., Shkurkina I.S. Рhenotypes of antibiotic resistance and frequency of detection of carbapenemases in Acinetobacter baumannii isolated in hospitals of Nizhny Novgorod. Klinicheskaya Laboratornaya Diagnostika. 2023; 68(3):157-61. DOI: 10.51620/0869-2084-2023-68-3-157-161. (in Russian)
35. Temgoua F.T.D., Wu L. Mechanisms Efflux pumps of Acinetobacter baumannii (MDR): increasing resistance to antibiotics. Journal of Biosciences and Medicines. 2019; 7:48-70. DOI: 10.4236/jbm.2019.71006.
36. Ivanov M.E., Fursova N.K., Potapov V.D. Pseudomonas aeruginosa efflux pump superfamily (review of literature). Klinichescheskaya Laboratornaya Diagnostika 2022; 67(1): 53-8.
DOI: 10.51620/0869-2084-2022-67-1-53-58. (in Russian)
37. Kazmierczak K.M., Rabine S., Hackel M., McLaughlin R.E., Biedenbach D.J., Bouchillon S.K. et al. Multiyear, multinational survey of the incidence and global distribution of metallo-lactamaseproducing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016; 60:1067–78. DOI: 10.1128/AAC .02379-15.
38. Castanheira M., Deshpande L.M., Mendes R.E., Canton R., Sader H.S., Jones R.N. Variations in the occurrence of resistance phenotypes and carbapenemase genes among Enterobacteriaceae isolates in 20 years of the SENTRY antimicrobial surveillance program. Open Forum Infect. Dis. 2019; 6:S23–S33. DOI: 10.1093/ofid/ofy347.
39. Bagirova N.S. Petukhova I.N., Grigorievskaya Z.V., Dmitrieva N.V., Tereshhenko I.V. Problems of antimicrobial resistance in an oncology hospital: diagnostics of carbapenemase production, genotypes of nosocomial strains of A. baumannii, P. aeruginosa and K. pneumoniae. Laboratornaya sluzhba. 2020; 9(4):17-25. DOI: 10.17116/ labs2020904117. (in Russian)
40. Gostev V.V., Sidorenko S.V. Heteroresistance: clinical implications and detection methods (review of literature). Klinicheskaya Laboratornaya Diagnostika. 2023; 68 (7):418-27. DOI: 10.51620/0869-2084-2023-68-7-418-427. (in Russian)