Список литературы
Haltbakk J., Graue M., Harris J., Kirkevold M., Dunning T., Sigurdardottir A.K. Integrative review: Patient safety among older people with diabetes in home care services. J. Adv. Nurs. 2019 Mar 5; 44(3): 11-9.
Fazeli Farsani S., van der Aa M.P., van der Vorst M.M., Knibbe C.A., de Boer A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. A. Diabetologia. 2013 Jul; 56 (7): 1471-88.
Medina Escobar P., Moser M., Risch L., Risch M., Nydegger U.E., Stanga Z. Impaired glucose metabolism and type 2 diabetes in apparently healthy senior citizens. Swiss Med. Wkly. 2015 Nov 23; 145: w14209.
National Diabetes Statistics Report, 2014-CDC www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf
Sekirov.I, Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol Rev. 2010 Jul; 90 (3): 859-904.
Kashtanova D.A., Tkacheva O.N., Doudinskaya E.N., Strazhesko I.D., Kotovskaya Y.V., Popenko A.S. et al. Gut Microbiota in Patients with Different Metabolic Statuses: Moscow Study. Microorganisms. 2018 Sep 25; 6(4): 3-4.
Lippert K., Kedenko L., Antonielli L., Kedenko I., Gemeier C., Leitner M. et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes. 2017 Aug 24; 8(4): 545-56.
Navab-Moghadam F, Sedighi M, Khamseh ME, Alaei-Shahmiri F, Talebi M, Razavi S et al. The association of type II diabetes with gut microbiota composition. Microb Pathog. 2017 Sep; 110: 630-6.
Salamon D., Sroka-Oleksiak A., Kapusta P., Szopa M., Mrozińska S., Ludwig-Słomczyńska A.H. et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. Pol. Arch. Intern. Med. 2018 Jun 30; 128(6): 336-43.
Karlsson F.H., Tremaroli V., Nookaew I., Bergström G., Behre C.J., Fagerberg B. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013 Jun 6; 498(7452): 99-103.
Medlock G.L., Carey M.A., McDuffie D.G., Mundy M.B., Giallourou N., Swann J.R. et al. Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota. Cell Syst. 2018 Sep 26; 7(3): 245-257.e7.
Lederberg J., McCray A. ‘Ome sweet ‘omics — A genealogical treasury of words. Scientist. 2001; 15: 8.
Ursell L.K., Metcalf J.L., Parfrey L.W., Knight R. Defining the human microbiome. Nutr Rev. 2012 Aug; 70 Suppl 1: S38-44.
Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K. et al. Population-level analysis of gut microbiome variation. Science. 2016 Apr 29; 352 (6285): 560-4.
De Vos W.M., de Vos E.A. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr. Rev. 2012; 70 (Suppl. 1): S45-56.
Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10; 308(5728): 1635-8.
Mahowald M.A., Rey F.E., Seedorf H., Turnbaugh P.J., Fulton R.S. et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl.Acad. Sci U S A. 2009 Apr 7; 106(14): 5859-64.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13; 486(7402): 207-14.
Безродный С.Л., Шендеров Б.А. Кишечная микробиота как источник новых биомаркеров старения. Вестник восстановительной медицины. 2015; 2: 40-7
Tran L., Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J. Gerontol.A Biol. Sci Med. Sci (2013) 68: 1045-56
Бондаренко В.М., Рябиченко Е.В. Роль дисфункции кишечного барьера в поддержании хронического воспалительного процесса различной локализации. Журнал микробиологии. 2010; 1: 92-100.
Бондаренко В.М., Лиходед В.Г. Роль эндотоксина кишечной микрофлоры в физиологии и патологии человека. Бюллетень Оренбургского научного центра УрО РАН (электронный журнал), 2012; 3: 2-7.
Hayes C.L., Dong J., Galipeau H.J., Jury J., McCarville J., Huang X. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. 2018 Sep 21;8(1): 14184
Яковлев М.Ю. Кишечный эндотоксин и воспаление. Национальное руководство по дерматовенерологии. М.: ГЭОТАР-медиа; 2011; 8: 99-414
Whitfield C., Trent M.S. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem. 2014; 83(): 99-128.
Mahla R.S., Reddy M.C., Prasad D.V., Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol. 2013 Sep 2; 4: 248.
Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. Elsevier Philadelphia, PA, USA: 2014; 64(3): 487-505.
Akira S. & Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004; 4: 499-511.
Rakoff-Wahoum S., Paglino J., Esmali-Varzaeh F. et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004; 118 (2): 229-41.
Abreu M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010 Feb; 10(2): 131-44.
Park B.S., Lee J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013 Dec 6; 45: e66.
Sousa-Valente J., Brain S.D. A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin. Immunopathol. 2018; 40: 229-36.
Alonso-Carbajo L., Kecskes M., Jacobs G., Pironet A., Syam N., Talavera K., Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium. 2017; 66: 48-61.
Laing R.J., Dhaka A. ThermoTRPs and pain. The Neuroscientist. 2016; 22: 171-87.
Mulier M., Vriens J., Voets T. TRP channel pores and local calcium signals. Cell Calcium. 2017; 66: 19-24.
Meseguer V., Alpizar Y.A., Luis E. Tajada S., Denlinger B., Fajardo O. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 2014; 5: 3125.
Boonen B., Alpizar Y.A., Sanchez A., Lopez-Requena A., Voets T., Talavera K. Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium. 2018; 73: 72-81.
Schappe M.S., Szteyn K., Stremska M.E., Mendu S.K., Downs T.K., Seegren P.V. et al. Chanzyme TRPM7 mediates the Ca2+ influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity. 2018; 48: 59-74.
Tauseef M., Knezevic N., Chava K.R., Smith M., Sukriti S., Gianaris N. et al. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J. Exp. Med. 2012; 209: 1953-68.
Andonegui G., Goyert S.M., Kubes P. Lipopolysaccharide-induced leukocyte-endothelial cell interactions: A role for CD14 versus Toll-like receptor 4 within microvessels. J. Immunol. 2002; 169: 2111-9.
Sands W.A., Clark J.S., Liew F.Y. The role of a phosphatidylcholine-specific phospholipase C in the production of diacylglycerol for nitric oxide synthesis in macrophages activated by IFN-gamma and LPS. Biochem. Biophys. Res. Commun. 1994; 199: 461-6.
Zhang L., Li H.Y., Li H., Zhao J., Su L., Zhang Y., Zhang S.L., Miao J.Y. Lipopolysaccharide activated phosphatidylcholine-specific phospholipase c and induced IL-8 and MCP-1 production in vascular endothelial cells. J. Cell Physiol. 2011; 226: 1694-701.
Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 2006; 86: 279-367.
Kini V., Chavez A., Mehta D. A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J. Biol. Chem. 2010; 285:33082-91.
Weissmann N., Sydykov A., Kalwa H., Storch U., Fuchs B., Mederos y Schnitzler M et al. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat. Commun. 2012; 3: 649.
Осипов Г.А. Способ определения родового (видового) состава ассоциации микроорганизмов. Патент РФ № 2086642; 1997.
Осипов Г.А., Бойко Н.Б., Новикова В.П. и др. Методика масс-спектрометрии микробных маркёров как способ оценки пристеночной кишечной микробиоты при заболеваниях органов пищеварения. Учебно-методическое пособие. СПб: Изд-во «Левша». 2013; 60(2): 54-95.
Осипов Г.А. Хромато-масс-спектрометрический анализ микроорганизмов и их сообществ в клинических пробах при инфекциях и дисбиозах. Химический анализ в медицинской диагностике. М.: Наука; 2010: 293-368.
Stead D.E., Sellwood J.E., Wilson J. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol. 1992; 72: 315-21.
Moss C.W., Dees S.R. Identification of microorganisms by gas chromatographic — mass spectrometric analysis of cellular fatty acids. J. Chromatogr. 1985; 12: 595-604.
Nagan N., Zoeller R.A. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 2001; 40: 199-229.
Braverman N.E., Moser A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 2012; 1822: 1442-52.
Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500: 232-6.
Ventura M., Turroni F., Lugli G.A., van Sinderen D. Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J. Sci. Food Agric. 2014; 94: 163-8.
Goldfine H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog. Lipid Res. 2010; 49: 493-8.
Řezanka T., Křesinová Z., Kolouchová I., Sigler K. Lipidomic analysis of bacterial plasmalogens. Folia Microbiol. 2012; 57: 463-72.
Червинец В.М., Червинец Ю.В., Беляева Е.А., Мурашова Л.А., Чаркова А.Р., Миронов А.Ю. Влияние уровня глюкозы в крови на микробиоценоз кишечника и качество жизни людей с предрасположенностью к сахарному диабету 2-го типа. Клиническая лабораторная диагностика. 2016; 61 (12): 857-60