Аннотация
Муковисцидоз (кистозный фиброз) — наследственное заболевание, характеризующееся множественным поражением органов и систем, включая респираторный тракт, репродуктивную и пищеварительную системы. Наиболее частым проявлением муковисцидоза является нарушение бронхиальной секреции, сопровождающееся развитием бронхоoбструкции и хроническим инфекционным процессом в дыхательных путях (лёгочная болезнь). К патогенам, имеющим приоритетное клиническое значение в патогенезе лёгочной болезни, относят Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, Burkholderia cepacia complex (BCC), Stenotrophomonas maltophilia, Achromobacter spp., нетуберкулёзные виды рода Mycobacterium (НТМ). Обзор посвящён микробиологической диагностике при лёгочной болезни у пациентов с муковисцидозом, описаны задачи и особенности методов выделения, идентификации, генетического типирования и оценки антимикробной резистентности (АМР) приоритетных лёгочных патогенов. Поиск литературы проведён с использованием базы данных PubMed, Российской научной электронной библиотеки eLIBRARY, поисковых систем Европейского общества микробиологии и инфекционных болезней (ESCMID), Европейского общества муковисцидоза (ECFS). Особенностью диагностики S. aureus является необходимость поиска морфотипа «малых колоний» (SCV-морфотип), метициллин-резистентных изолятов, штаммов с необычным резистентным фенотипом. При диагностике P. aeruginosa, помимо фенотипической оценки АМР, следует анализировать наличие генов β-лактамаз. При выделении H. influenzae, SCV-морфотипа S. maltophilia и BCC важно учитывать особые требования к составу питательных сред и условиям культивирования. Достоверную идентификацию большинства видов BCC и Achromobacter можно провести только на основе технологий секвенирования. Особенностями выделения и идентификации НТМ является длительное время культивирования и необходимость применения технологий секвенирования для верификации видовой принадлежности. При диагностике S. aureus, P. aeruginosa, Achromobacter spp. следует детектировать штаммы, относящиеся к эпидемическим клонам.
Annotation
Cystic fibrosis (CF) is a genetic disease affecting multiple organs including respiratory tract, reproductive and digestive systems. The most common manifestation of CF is altered fluid transport across airway epithelium leading to bronchial obstruction and chronic respiratory infections (lung disease). The list of major respiratory pathogens in CF includes Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, Burkholderia cepacia complex (BCC), Stenotrophomonas maltophilia, Achromobacter spp., nontuberculous mycobacteria (NTM). This review aims to describe microbiological diagnostics features (including isolation, identification, typing, antibiotic susceptibility testing features) of lung disease in CF patients. A literature search was performed in PubMed database, Russian scientific electronic library eLIBRARY, search systems of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), European Cystic Fibrosis Society (ECFS). The main diagnostic feature of S. aureus is the need for searching the small colony variant (SCV) morphotype and methicillin-resistant isolates. In P. aeruginosa diagnostics, not only phenotypic antibiotic susceptibility testing, but also beta-lactamases genes detection should be performed. For H. influenzae, S. maltophilia SCV-morphotype and BCC isolation special requirements for the culture medium composition and cultivation conditions need to be considered. The most BCC and Achromobacter species can be identified only based on gene sequencing. Isolation and identification features of NTM are long cultivation time and the need for species affiliation verifying using sequence technologies. Moreover, in S. aureus, P. aeruginosa, Achromobacter spp. diagnostics, the isolates belonging to the epidemic clones should be detected, since such isolates can impact patient outcomes and pose the threat to other CF patients.
Key words: cystic fibrosis; Staphylococcus aureus; Pseudomonas aeruginosa; Haemophilus influenzae; Burkholderia cepacia complex; Stenotrophomonas maltophilia; Achromobacter spp.; nontuberculous mycobacteria.
Список литературы
1.Anderson M.P., Sheppard D.N., Berger H.A., Welsh M. J. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am. J. Physiol. 1992; 263(1 Pt 1): L1-14. DOI: 10.1152/ajplung.1992.263.1.L1.
2.Polgreen P.M., Alejandro P.C. Clinical phenotypes of cystic fibrosis carriers. Annu. Rev. Med. 2022; 73: 563-74. DOI: 10.1146/annurev-med-042120-020148.
3.ECFS Patient Registry. Annual Data Report. 2021. European Cystic Fibrosis Society. Available at: https://www.ecfs.eu/sites/default/files/Annual%20Report_2021_09Jun2023.pdf (accessed September 2023)
4.Russian Association for patients with cystic fibrosis. Available at: https://api.med-gen.ru/site/assets/files/51107/site_registre_2020.pdf (accessed September 2023). (in Russian)
5.Hernandez L.C., Moreno R.M.G., Cartagena M.N.B., Pelaez A., Sole A., Fernandez A.A. et al. Experience with elexacaftor/tezacaftor/ivacaftor in patients with cystic fibrosis and advanced disease. Arch. Bronconeumol. 2023; S0300-2896(23):00176-X. DOI: 10.1016/j. arbres.2023.05.017.
6.Del Barrio-Tofino E., Lopez-Causape C., Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents. 2020; 56(6): 106196. DOI: 10.1016/j.ijantimicag.2020.106196.
7.Erfanimanesh S., Emaneini M., Modaresi M.R., Feizabadi M.M., Halimi S., Beigverdi R. et al. Distribution and characteristics of bacteria isolated from cystic fibrosis patients with pulmonary exacerbation. Can. J. Infect. Dis. Med. Microbiol. 2022; 2022: 5831139. DOI: 10.1155/2022/5831139.
8.Besier S., Smaczny C., von Mallinckrodt C., Krahl A., Ackermann H., Brade V. et al. Prevalence and clinical significance of Staphylococcus aureus small colony variants in cystic fibrosis lung disease. J. Clin. Microbiol. 2007; 45(1): 168-72. DOI: 10.1128/JCM.01510-06.
9.Churkina L.N., Bidnenko S.I., Vaneechoutte M., Avdeeva L.V., Makushenko A.S., Lutko O.B. et al. Algorithm of Identification of Atypical Variants of Staphylococci, Pathogens of Chronic Pyoinflammatory Processes in Humans. Antibiotiki I khimioterapiya. 2013; 58(11-12): 26-30. (in Russian)
10.Dyon-Tafani V., Josse J., Safrani-Lahyani J., Assant-Trouillet S., Chiganne M., Vincent F. et al. Clinical evaluation of three chromogenic media for the isolation of Staphylococcus aureus in respiratory samples in patients with cystic fibrosis. Diagn. Microbiol. Infect. Dis. 2021; 99(1): 115201. DOI: 10.1016/j.diagmicrobio.2020.115201.
11.Millette G., Seguin D.L., Isabelle C., Chamberland S., Lucier J.F., Rodrigue S. et al. Staphylococcus aureus small-colony variants from airways of adult cystic fibrosis patients as precursors of adaptive antibiotic-resistant mutations. Antibiotics (Basel). 2023; 12(6): 1069. DOI: 10.3390/antibiotics12061069.
12.Ota Y., Matsumoto T., Sugano M., Honda T. Identification of clinical thymidine-dependent small-colony variants of Staphylococcus aureus by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Rinsho Byori. 2015; 63(6): 683-7.
13.Keim K.C., George I.K., Reynolds L., Smith A.C. The clinical significance of Staphylococcus aureus small colony variants. Lab. Med. 2023; 54(3): 227–34. DOI: 10.1093/labmed/lmac101.
14.Wolter D.J., Emerson J.C., McNamara S., Buccat A.M., Qin X., Cochrane E. et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin. Infect. Dis. 2013; 57(3): 384-91. DOI: 10.1093/cid/cit270.
15.European Committee on Antimicrobial Susceptibility Testing. 2020. Intrinsic Resistance and Unusual Phenotypes Tables v3.2. Available at: https://www.eucast.org (accessed September 2023).
16.Alghamdi B.A., Al-Johani I., Al-Shamrani J.M., Alshamrani H.M., Al-Otaibi B.G., Almazmomi K. et al. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi. J. Biol. Sci. 2023; 30(4): 103604. DOI: 10.1016/j.sjbs.2023.103604.
17.Klevens R.M., Morrison M.A., Nadle J., Petit S., Gershman K., Ray S. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007; 298(15): 1763-71. DOI: 10.1001/jama.298.15.1763.
18.Goncharov A.E., Zueva L.P., Suvorov A.N., Glazovskaya L.S., Brusina E.B., Azizov I.S. et al. Leading Staphylococcus aureus epidemic clones circulating in different geographic regions of Eurasia. Meditsinskiy al`manakh. 2014; 4(34): 27-30. (in Russian)
19.Enright M.C., Day N.P., Davies C.E., Peacock S.J., Spratt B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000; 38(3): 1008-15. DOI: 10.1128/jcm.38.3.1008-1015.2000.
20.Weiser R., Donoghue D., Weightman A., Mahenthiralingam E. Evaluation of five selective media for the detection of Pseudomonas aeruginosa using a strain panel from clinical, environmental and industrial sources. J. Microbiol. Methods. 2014; 99: 8-14. DOI: 10.1016/j.mimet.2014.01.010.
21.Govan J.R.W. Characteristics of mucoid Pseudomonas aeruginosa in vitro and in vivo. In: Gacesa P., Russell N.J., eds. Pseudomonas Infection and Alginates. Springer, Dordrecht; 1990: 50–75. DOI: 10.1007/978-94-009-1836-8_4.
22.Malone J.G. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect. Drug. Resist. 2015; 29(8): 237-47. DOI: 10.2147/IDR.S68214.
23.Baillie S., Ireland K., Warwick S., Wareham D., Wilks M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br. J. Biomed. Sci. 2013; 70(4): 144-8. DOI: 10.1080/09674845.2013.
24.Moehario L.H., Tjoa E., Putranata H., Joon S., Edbert D., Robertus T. Performance of TDR-300B and VITEK®2 for the identification of Pseudomonas aeruginosa in comparison with VITEK®-MS. J. Int. Med. Res. 2021; 49(2):300060521989893. DOI: 10.1177/0300060521989893.
25.Рarkins M.D, Somayaji R., Waters V.J. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin. Microbiol. Rev. 2018; 31(4): e00019-18. DOI: 10.1128/CMR.00019-18.
26.European Committee on Antimicrobial Susceptibility Testing. 2023. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.1. Available at: https://www.eucast.org/clinical_breakpoints (accessed September 2023).
27.Clinical and Laboratory Standards Institute. 2023. Performance Standards for Antimicrobial Susceptibility Testing. Available at: http://em100.edaptivedocs.net/dashboard.aspx (accessed September 2023).
28.Thornton C.S., Parkins M.D. Microbial epidemiology of the cystic fibrosis airways: past, present, and future. Semin. Respir. Crit. Care Med. 2023; 44(02): 269-86. DOI: 10.1055/s-0042-1758732.
29.Cardines R., Giufre M., Pompilio A., Fiscarelli E., Ricciotti G., Di Bonaventura G. et al. Haemophilus influenzae in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int. J. Med. Microbiol. 2012; 302(1): 45-52. DOI: 10.1016/j.ijmm.2011.08.003.
30.Roman F., Canton R., Perez-Vazquez M., Baquero F., Campos J. Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J. Clin. Microbiol. 2004; 42(04): 1450-9. DOI: 10.1128/jcm.42.4.1450-1459.2004.
31.Fluit A.C., Bayjanov J.R., Benaissa-Trouw B.J., Rogers M.R., Diez-Aguilar M., Canton R. et al. Whole-genome analysis of Haemophilus influenzae strains isolated from persons with cystic fibrosis. J. Med. Microbiol. 2022; 71(8): 001570. DOI: 10.1099/jmm.0.001570.
32.Branstetter J.W., Yarbrough A., Poole C. Management of cepacia syndrome with a combination of intravenous and inhaled antimicrobials in a non-cystic fibrosis pediatric patient. J. Pediatr. Pharmacol. Ther. 2020; 25(8): 730-4. DOI: 10.5863/1551-6776-25.8.730.
33.Laboratory standards for processing microbiological samples from people with cystic fibrosis. Report of the UK Cystic Fibrosis Trust Microbiology Laboratory Standards Working Group. 2022. Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2023-01/CF%20Lab%20Standards%20FINAL.pdf (accessed September 2023).
34.Marrs E.C.L., Perry A., Perry J.D. Evaluation of three culture media for isolation of Burkholderia cepacia complex from respiratory samples of patients with cystic fibrosis. Microorganisms. 2021; 9(12): 2604. DOI: 10.3390/microorganisms9122604.
35.Cuzzi B., Herasimenka Y., Silipo A., Lanzetta R., Liut G., Rizzo R. et al. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation. PLoS One. 2014; 9(4): e94372. DOI: 10.1371/journal.pone.0094372.
36.Zlosnik J.E., Hird T.J., Fraenkel M.C., Moreira L.M., Henry D.A., Speert D.P. Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J. Clin. Microbiol. 2008; 46(4): 1470-3. DOI: 10.1128/JCM.02273-07.
37.Cooper V.S., Staples R.K., Traverse C.C., Ellis C.N. Parallel evolution of small colony variants in Burkholderia cenocepacia biofilms. Genomics. 2014; 104(6 Pt A): 447-52. DOI: 10.1016/j.ygeno.2014.09.007.
38.Bernier S.P., Nguyen D.T., Sokol P.A. A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infect. Immun. 2008; 76(1): 38-47. DOI: 10.1128/IAI.00874-07.
39.Jin Y., Zhou J., Zhou J., Hu M., Zhang Q., Kong N. et al. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol. Direct. 2020; 15(1): 6. DOI: 10.1186/s13062-020-0258-5.
40.Devanga Ragupathi N.K., Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann. Clin. Microbiol. Antimicrob. 2019; 18(1): 7. DOI: 10.1186/s12941-019-0306-0.
41.Pope C.E., Short P., Carter P.E. Species distribution of Burkholderia cepacia complex isolates in cystic fibrosis and non-cystic fibrosis patients in New Zealand. J. Cyst. Fibros. 2010; 9(6): 442-6. DOI: 10.1016/j.jcf.2010.08.011.
42.Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Sharapova N.E., Semenov A.N. et al. On Burkholderiales order microorganisms and cystic fibrosis in Russia. BMC Genomics. 2018; 19(Suppl. 3): 74. DOI: 10.1186/s12864-018-4472-9.
43.Dedeckova K., Kalferstova L., Strnad H., Vavrova J., Drevinek P. Novel diagnostic PCR assay for Burkholderia cenocepacia epidemic strain ST32 and its utility in monitoring infection in cystic fibrosis patients. J. Cyst. Fibros. 2013; 12(5): 475-81. DOI: 10.1016/j. jcf.2012.12.007.
44.EUCAST Expected Resistant Phenotypes Version 1.2. January 2023. Available at: https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes (accessed September 2023).
45.Berdah L., Taytard J., Leyronnas S., Clement A., Boelle P.Y., Corvol H. Stenotrophomonas maltophilia: a marker of lung disease severity. Pediatr. Pulmonol. 2018; 53(4): 426-30. DOI: 10.1002/ppul.23943.
46.Kerr K.G., Denton M., Todd N., Corps C.M., Kumari P., Hawkey P.M. A new selective differential medium for isolation of Stenotrophomonas maltophilia. Eur. J. Clin. Microbiol. Infect. Dis. 1996; 15(7): 607-10. DOI: 10.1007/BF01709373.
47.Denton M., Hall M.J., Todd N.J., Kerr K.G., Littlewood J.M. Improved isolation of Stenotrophomonas maltophilia from the sputa of patients with cystic fibrosis using a selective medium. Clin. Microbiol. Infect. 2000; 6(7): 397-8. DOI: 10.1046/j.1469-0691.2000.00098.x.
48.Said M.S., Tirthani E., Lesho E. Stenotrophomonas maltophilia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. PMID: 34283489.
49.Esposito A., Pompilio A., Bettua C., Crocetta V., Giacobazzi E., Fiscarelli E. et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front. Microbiol. 2017; 8: 1590. DOI: 10.3389/fmicb.2017.01590.
50.Marsac C., Berdah L., Thouvenin G., Sermet-Gaudelus I., Corvol H. Achromobacter xylosoxidans airway infection is associated with lung disease severity in children with cystic fibrosis. ERJ Open Res. 2021; 7(2): 00076-2021. DOI: 10.1183/23120541.
51.Amoureux L., Bador J., Fardeheb S., Mabille C., Couchot C., Massip C. et al. Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl. Environ. Microbiol. 2013; 79(23): 7142-9. DOI: 10.1128/AEM.02293-13.
52.Isler B., Kidd T.J., Stewart A.G., Harris P., Paterson D.L. Achromobacter infections and treatment options. Antimicrob. Agents. Chemother. 2020; 64(11): e01025-20. DOI: 10.1128/AAC.01025-20.
53.Gabrielaite M., Nielsen F.C., Johansen H.K., Marvig R.L. Achromobacter spp. genetic adaptation in cystic fibrosis. Microb. Genom. 2021; 7(7): 000582. DOI: 10.1099/mgen.0.000582.
54.Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Semenov A.N., Lazareva A.V. et al. Diversity and hazard of respiratory infection of Achromobacter spp. in cystic fibrosis patients. Pul`monologiya. 2015; 25(4): 389-402. (in Russian)
55.Prieto M.D., Alam M.E., Franciosi A.N., Quon B.S. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: A systematic review and meta-analysis. ERJ Open Res. 2023; 9(1): 00336-2022. DOI: 10.1183/23120541.00336-2022.
56.Lipuma J.J. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 2010; 23(2): 299-323. DOI: 10.1128/cmr.00068-09.
57.Stahl D.A., Urbance J.W. The division between fast-and slow-growing species corresponds to natural relationships among the mycobacteria. Journal of bacteriology. 1990; 172(1): 116-24. DOI: 10.1128/jb.172.1.116-124.1990.
58.Turenne C.Y. Nontuberculous mycobacteria: insights on taxonomy and evolution. Infect. Genet. Evol. 2019; 72: 159-68. DOI: 10.1016/j. meegid.2019.01.017.
59.van Ingen J., Turenne C.Y., Tortoli E., Wallace R.J. Jr, Brown-Elliott B.A. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int. J. Syst. Evol. Microbiol. 2018; 68(11): 3666-77. DOI: 10.1099/ijsem.0.003026.
60.Candido P.H.C., Nunes L.D.S., Marques E.A., Folescu T.W., Coelho F.S., de Moura V.C.N. et al. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients. J. Clin. Microbiol. 2014; 52(8): 2990-2997. DOI: 10.1128/jcm.00549-14.
61.Zhou Y., Mu W., Zhang J., Wen S.W., Pakhale S. Global prevalence of non-tuberculous mycobacteria in adults with non-cystic fibrosis bronchiectasis 2006–2021: a systematic review and meta-analysis. BMJ Open. 2022; 12(8): e055672. DOI: 10.1136/bmjopen-2021-055672.
62.Espinosa-del-Barrio L., Boira I., Esteban V., Chiner E. Mycobacterium malmoense infection in a patient with adult cystic fibrosis: a case report. Arch. Bronconeumol. 2023; 59(8): 540-1. DOI: 10.1016/j.arbres.2023.03.021.
63.Russo C., Tortoli E., Menichella D. Evaluation of the new GenoType Mycobacterium assay for identification of Mycobacterial species. J. Clin. Microbiol. 2006; 44(2): 334-9. DOI: 10.1128/jcm.44.2.334-339.2006.
64.Zemanick E.T., Hoffman L.R. Cystic fibrosis: microbiology and host response. Pediatr. Clin. North. Am. 2016; 63(4): 617-36. DOI: 10.1016/j.pcl.2016.04.003.
65.Rodriguez Temporal D., Zvezdanova M.E., Benedi P., Marin M., Blazquez Sanchez M., Ruiz Serrano M.J. et al. Identification of Nocardia and non-tuberculous Mycobacterium species by MALDI-ToF MS using the VITEK MS coupled to IVD and RUO databases. Microb. Biotechnol. 2023; 16(4): 778-83. DOI: 10.1111/1751-7915.14146.
66.Piersimoni C., Scarparo C. Pulmonary infections associated with non-tuberculous mycobacteria in immunocompetent patients. Lancet Infect. Dis. 2008; 8(5): 323-34. DOI: 10.1016/S1473-3099(08)70100-2.
67.Daley C.L., Iaccarino J.M., Lange C., Cambau E., Wallace R.J. Jr, Andrejak C. et al. Treatment of Nontuberculous Mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin. Infect. Dis. 2020; 71(4): 905-13. DOI: 10.1093/cid/ciaa1125.
68.Griffith D.E. Nontuberculous Mycobacterial disease: a comprehensive approach to diagnosis and management. 1st Ed. Berlin: Springer; 2018. DOI: 10.1007/978-3-319-93473-0.
69.Clinical and Laboratory Standards Institute. 2018. Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 3rd ed. Available at: https://clsi.org/standards/products/microbiology/documents/m24/ (accessed September 2023).
70.Cheng A., Sun H.Y., Tsai Y.T., Lu P.L., Lee S.S.J., Lee Y.T. et al. Longitudinal non-cystic fibrosis trends of pulmonary Mycobacterium abscessus disease from 2010 to 2017: spread of the “globally successful clone” in Asia. ERJ Open Res. 2021; 7(1): 00191-2020. DOI: 10.1183/23120541.00191-2020.
71.Waglechner N., Tullis E., Stephenson A.L., Waters V., McIntosh F., Ma J. et al. Genomic epidemiology of Mycobacterium abscessus in a Canadian cystic fibrosis centre. Sci. Rep. 2022; 12: 16116. DOI: 10.1038/s41598-022-19666-8.
72.Gross J.E., Caceres S., Poch K., Hasan N.A., Jia F., Epperson L.E. et al. Investigating Nontuberculous Mycobacteria transmission at the Colorado Adult Cystic Fibrosis Program. Am. J. Respir. Crit. Care Med. 2022; 205(9): 1064-74. DOI: 10.1164/rccm.202108-1911OC.