Список литературы
Krochmal M., Fernandes M., Filip S. et al. PeptiCKDdb — peptide — and protein-centric database for the investigation of genesis and progression of chronic kidney disease. Database (Oxford). 2016; 2016: baw128.
Shen S.J., Hu Z.X., Li Q.H., Wang S.M., Song C.J. et al. Implications of the changes in serum neutrophil gelatinase-associated lipocalin and cystatin C in patients with chronic kidney disease. Nephrology (Carlton). 2014; Mar; 19(3): 129-35.
Szeto C.C., Kwan B.C., Lai K.B., Lai F.M., Chow K.M. et al. Urinary expression of kidney injury markers in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2010 Dec; 5(12): 2329-37.
Thongboonkerd V. Practical points in urinary proteomics. J. Proteome Res. 2007; Oct; 6(10): 3881-90.
Menglin L., Mindi Z., Youhe G. Changes of proteins induced by anticoagulants, can be more sensitively detected in urine rather than plasma. Sci. China Life Sci.2013; 57(7): 649-56.
Li M.Z., Zhao M. Gao Y. Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. Science China Life Sciences. 2014. 57: 649-56.
Wu J., Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Review of Proteomics. 2015.12(6): 623-36.
K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. Am. J. Kid. Dis. 2002; 39 (suppl 1).
Schinstock C.A., Semret M.H., Wagner S.J., Borland T.M., Bryant S.C., Kashani K.B. et al. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. 2013; May; 28(5): 1175-85.
Захарова Н.Б., Пастушкова Л.Х., Ларина И.М., Каширина Д.Н., Лях Р.В., Попков В.М. Значение протеомного состава мочи при заболеваниях мочевыводящих путей (обзор литературы). Экспериментальная и клиническая урология. 2017; 1: 22-6
Kamijo-Ikemori A., Ichikawa D., Matsui K., Yokoyama T., Sugaya T., Kimura K. Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho Byori. 2013 Jul; 61(7): 635-40
Земченков А.Ю., Томилина Н.А. «К/ДОКИ» обращается к истокам хронической почечной недостаточности (О новом разделе Рекомендаций K/DOQI по диагностике, классификации и оценке тяжести хронических заболеваний почек). Нефрология и диализ. 2004; 6(3): 204-20.
Добронравов В.А. Обзор патофизиологии острого повреждения почек. В кн.: Смирнов А.В., Добронравов В.А, Румянцев А.Ш., Каюков И.Г. Острое повреждение почек. М.: МИА; 2015; 30-79.
Валеева О.А., Пастушкова Л.Х., Пахарукова Н.А., Доброхотов И.В., Ларина И.М. Вариабельность протеома мочи здорового человека в эксперименте с 105-суточной изоляцией в гермообъекте. Физиология человека. 2011; 37(3): 98 — 102.
Kangari G., Esteghamati M., Ghasemi K., Mahboobi H. Predictive accuracy of urinary β2-microglobulin for kidney injury in children with acute pyelonephritis. Iran J. Kidney Dis. 2015; Jan; 9(1):19-24
Шатохина C.Н., Дасаева Л.А., Шатохина И.С., Шабалин В.Н., Шилов Е.М. Патогенетические особенности морфологической картины фаций мочи больных хроническим пиелонефритом. Лечащий врач. 2014; (1): 36-42
Fidan K., Kandur Y., Buyukkaragoz B., Akdemir U.O., Soylemezoglu O. Hypertension in pediatric patients with renal scarring in association with vesicoureteral reflux. Urology. 2013; Jan; 81(1): 173-7.
Kim A.J., Ro H., Kim H., Chang J.H., Lee H.H., Chung W. et al. Klotho and S100A8/A9 as Discriminative Markers between Pre-Renal and Intrinsic Acute Kidney Injury. PLoS One. 2016; Jan 22; 11(1): e0147255.
Смирнов А.В., Добронравов В.А., Румянцев А.Ш., Шилов Е.М., Ватазин А.В. и др. Национальные рекомендации. Острое повреждение почек: основные принципы диагностики, профилактики и терапии. Часть 1. Нефрология. 2016; 20(1):79-104
Kang H.J., Jung S.K., Kim S.J., Chung S.J. Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme. Acta Crystallogr. D. Crystallogr. 2008; Jun; 64(Pt 6): 651-7.
Eltoweissy M., Müller G.A., Bibi A., Nguye P.V., Dihazi G.H., Müller C.A. et al. Proteomics analysis identifies PARK7 as an important player for renal cell resistance and survival under oxidative stress. Mol. Biosyst. 2011 Apr; 7(4): 1277-88.
Chiangjong W., Thongboonkerd V. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium. Sci Rep.2016; 6: 24064.
Schroeder H.W. Jr, Cavacini L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010; Feb; 125(2 Suppl 2): 41-52.
Wang N.S., McHeyzer-Williams L.J., Okitsu S.L., Burris T.P., Reiner S.L., McHeyzer-Williams M.G. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat. Immunol. 2012; May 6; 13(6): 604-11.
Uchil P.D., Nagarajan A., Kumar P. β-Galactosidase. Cold Spring Harb. Protoc. 2017; Oct 3; 2017(10): pdb.top096198.
Verzola D., Gandolfo M.T., Gaetani G., Ferraris A., Mangerini R., Ferrario F. et al. Garibotto Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2008; Nov; 295(5): 1563-73.
Hamed S.A. The effect of antiepileptic drugs on the kidney function and structure. Expert Rev. Clin. Pharmacol. 2017; Sep; 10(9): 993-1006.
Ossipova O., Chu C.W., Fillatre J., Brott B.K., Itoh K., Sokol S.Y. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev. Biol. 2015; Dec 15; 408(2): 316-27.
Esparvarinha M., Nickho H., Mohammadi H., Aghebati-Maleki L., Abdolalizadeh J., Majidi J. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother. 2017; Jul; 91: 632-44.
Anderson G.P. Free immunoglobulin light chains in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012; 185(8): 793-5.
Cohen G., Rudnicki M., Hörl W.H. Uremic toxins modulate the spontaneous apoptotic cell death and essential functions of neutrophils. Kidney Int. 2001; 59: 48-S52.
Hutchison C.A., Harding S., Hewins P., Mead G.P., Townsend J., Bradwell A.R et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008; 3(6): 1684-90.
Desjardins L., Liabeuf S., Lenglet A., Lemke H.-D., Vanholder R., Choukroun G. et al. E.U.T.W. Group. Association between free light chain levels, and disease progression and mortality in chronic kidney disease. Toxins. 2013; 5(11): 2058-73.
Jia J., Arif A., Terenzi F., Willard B., Plow E.F., Hazen S.L. et al. Target-selective protein S-nitrosylation by sequence motif recognition. Cell. 2014; 159: 623-34.
Frosch M., Metze D., Foell D., Vogl T., Sorg C., Sunderkötter C., Roth J. Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis. Exp. Dermatol. 2005; 14(4): 259-65.
Champaiboon C., Sappington K.J., Guenther B.D., Ross K.F., Herzberg M.C. Calprotectin S100A9 calciumbinding loops I and II are essential for keratinocyte resistance to bacterial invasion. J. Biol. Chem. 2009 Mar 3; 284(11): 7078-90.
Vogl T., Tenbrock K., Ludwig S., Leukert N., Ehrhardt C., van Zoelen M.A.et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 2007; Sep; 13(9): 1042-9.
Turnbull A.P., Ioannidis S., Krajewski W.W., Pinto-Fernandez A., Heride C., Martin A.CL. et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 2017; Oct 26; 550(7677): 481-6.
Belgareh-Touzé N., Léon S., Erpapazoglou Z., Stawiecka-Mirota M., Urban-Grimal D., Haguenauer-Tsapis R. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem. Soc. Trans. 2008; Oct; 36(Pt 5): 791-6.
Rajan V., Mitch W. E. Ubiquitin, proteasomes and proteolytic mechanisms activated by kidney disease. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2008; Dec.; 1782(12): 795-9.
Song X., Wang S., Gu B., Hou Q., Liu Y., Zhang M. Production and characterization of a monoclonal antibody against GRAM domain-containing protein 1A. Monoclon. Antib. Immunodiagn. Immunother. 2014; Aug; 33(4): 246-53.