Аннотация
Миелодиспластический синдром (МДС) включает в себя группу клональных гемопоэтических заболеваний, основными проявлениями которых являются цитопения в периферической крови и дисплазия в костном мозге. Характерной чертой МДС является повышенный риск трансформации в острый миелоидный лейкоз (ОМЛ). В настоящее время существуют определенные трудности в диагностике, лечении, а также в прогнозировании осложнений заболевания, что связано со сложными генетическими и эпигенетическими механизмами данной патологии, отсутствием стандартных методов диагностики и терапии, характерных патогномоничных клинических проявлений. С целью систематизации имеющейся информации о нарушениях, связанных с обменом веществ, в статье представлены обобщенные данные об изменениях в азотистом, углеводном обменах, обмене железа и гемоглобина, а также их влияние на микроокружение костного мозга, выживаемость в целом, и риск трансформации в ОМЛ. В статье отражены результаты классических работ по изучаемой проблеме и приведены результаты исследований в данной области за последнее десятилетие. Кроме того, в статье приведена обобщенная таблица, демонстрирующая характерные метаболические сдвиги при разнообразных формах миелодиспластического синдрома. Необходимо отметить, что исследования, включенные в обзор, имеют ряд ограничений, связанных с тем, что в большинстве случаев в качестве биоматериала использовалась периферическая кровь, что может только косвенно отражать патобиохимические изменения в костном мозге при МДС. В связи с этим, актуальным является поиск объектов исследования, напрямую связанных с оценкой биохимических процессов в гемопоэтических предшественниках центральных органов гемопоэза при развитии миелодисплазии.
Annotation
Myelodysplastic syndrome (MDS) includes a group of clonal hematopoietic tumors, the main manifestations of which are cytopenia in the peripheral blood and dysplasia in the bone marrow. A characteristic feature of MDS is an increased risk of transformation into acute myeloid leukemia (AML). Currently, there are certain difficulties in diagnosing, treating, and predicting the complications of the disease, which is associated with the complex genetic and epigenetic mechanisms of this pathology, the lack of standard methods of diagnosis and therapy, and characteristic pathognomonic clinical manifestations. In order to systematize the available information on metabolic disorders, the article presents generalized data on changes in nitrogen, carbohydrate, iron and hemoglobin metabolism, as well as their impact on the bone marrow microenvironment, overall survival and the risk of transformation into AML. The article reflects the results of classical works on the problem under study, as well as the results of research in this area over the past decade. In addition, the article provides a generalized table showing the characteristic metabolic changes in various forms of myelodysplastic syndrome. It should be noted that the studies included in the review have a number of limitations due to the fact that in most cases peripheral blood was used as a biomaterial, which can only indirectly reflect pathobiochemical changes in the bone marrow in MDS. In this regard, it is relevant to search for research objects directly related to the assessment of biochemical processes in the hematopoietic precursors of the central organs of hematopoiesis during the development of myelodysplasia.
Список литературы
1. Lugovskaya S.A., Pochtar` M.E. Gematologicheskiy atlas. Moscow — Tver`: Triada; 2016. (in Russian)
2. Hasserjian R.P. Myelodysplastic Syndrome Updated. Pathobiology. 2019; 86(1): 7-13. DOI: 10.1159/000489702.
3. Hong M., He G.. The 2016 Revision to the World Health Organization Classification of Myelodysplastic Syndromes. J. Transl. Int. Med. 2017; 5(3):139-43. DOI: 10.1515/jtim-2017-0002.
4. Khoury J. D., Solary E., Abla O., Akkari Y., Alaggio R., Apperley J. F. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36(7): 1703-19. DOI: 10.1038/s41375-022-01613-1.
5. Lepilkin P.V., Kulaeva E.D., Zeltser A.N., Mordanov S.V., Shatokhin Yu.V. Myelodysplastic syndrome: epidemiology and epigenetic disorders. Meditsinskiy vestnik Yuga Rossii. 2022; 13(2):179-90. DOI: 10.21886/2219-8075-2022-13-2-179-190. (in Russian)
6. Germing U., Kobbe G., Haas R., Gattermann N. Myelodysplastic syndromes: diagnosis, prognosis, and treatment. Dtsch. Arztebl. Int. 2013; 110(46): 783-90. DOI: 10.3238/arztebl.2013.0783.
7. Neukirchen J., Schoonen W. M., Strupp C., Gattermann N., Aul C., Haas R. et al. Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leuk. Res. 2011; 35(12): 1591-6. DOI: 10.1016/j.leukres.2011.06.001.
8. Kuendgen A., Strupp C., Aivado M., Hildebrandt B., Haas R., Gattermann N. et al. Myelodysplastic syndromes in patients younger than age 50. J. Clin. Oncol. 2006; 24(34):5358-65. DOI: 10.1200/JCO.2006.07.5598.
9. Juluri K.R., Siu C., Cassaday R.D. Asparaginase in the Treatment of Acute Lymphoblastic Leukemia in Adults: Current Evidence and Place in Therapy. Blood Lymphat. Cancer. 2022; 12:55-79. DOI: 10.2147/BLCTT.S342052.
10. Pokrovskaya M.V., Pokrovsky V.S., Aleksandrova S.S., Sokolov N.N., Zhdanov D.D. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics. 2022; 14(3): 599. DOI: 10.3390/pharmaceutics14030599.
11. Abaji R., Krajinovic M. Pharmacogenetics of asparaginase in acute lymphoblastic leukemia. Cancer Drug Resist. 2019; 2(2): 242-55. DOI: 10.20517/cdr.2018.24.
12. Pettit K., Rezazadeh A., Atallah E.L., Radich J. Management of Myeloproliferative Neoplasms in the Molecular Era: From Research to Practice. Am. Soc. Clin. Oncol. Educ. Book. 2022; 42: 1-19. DOI: 10.1200/EDBK_349615.
13. Inzoli E., Aroldi A., Piazza R., Gambacorti-Passerini C. Tyrosine kinase inhibitor discontinuation in chronic myeloid leukemia: eligibility criteria and predictors of success. Am. J. Hematol. 2022; 97(8): 1075-85. DOI: 10.1002/ajh.26556.
14. Shirin A.D., Baranova O.Yu. Hypomethylating drugs in hematology. Klinicheskaya onkogematologiya. 2016; 9(4): 369–82. DOI: 10.21320/2500-2139-2016-9-4-369-382. (in Russian)
15. Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Finelli C., Giagounidis A. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009; 10(3): 223-32. DOI: 10.1016/S1470-2045(09)70003.
16. Tria F.P. 4th, Ang D.C., Fan G. Myelodysplastic Syndrome: Diagnosis and Screening. Diagnostics (Basel). 2022; 12(7): 1581. DOI: 10.3390/diagnostics12071581.
17. Bento L.C., Correia R.P., Pitangueiras Mangueira C.L., De Souza Barroso R., Rocha F. A., Bacal N.S. et al. The Use of flow cytometry in myelodysplastic Syndroes: A Review. Front Oncol. 2017; 7: 270. DOI: 10.3389/fonc.2017.00270.
18. Kennedy J.A., Ebert B.L. Clinical Implications of Genetic Mutations in Myelodysplastic Syndrome. J. Clin. Oncol. 2017; 35(9): 968-74. DOI: 10.1200/JCO.2016.71.0806.
19. Kennedy A.L., Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019; 133(10): 1071-1085. DOI: 10.1182/blood-2018-10-844662.
20. Navada S. C., Chatalbash A., Silverman L. R. Clinical significance of cytogenetic manifestations in myelodysplastic syndromes. Laboratory Medicine. 2013; 44(2): 103–7.
21. Rosenberg C.A., Bill M., Rodrigues M.A., Hauerslev M., Kerndrup G.B., Hokland P. et al. Exploring dyserythropoiesis in patients with myelodysplastic syndrome by imaging flow cytometry and machine-learning assisted morphometrics. Cytometry B Clin. Cytom. 2021; 100(5): 554-67. DOI: 10.1002/cyto.b.21975.
22. Liu C., Zou C., Zou S., Wang Q., Xiao D., Zhang L. Abnormal hemoglobin H band in myelodysplastic syndromes (MDS): A case report. Transfus. Clin Biol. 2021; 28(2): 206-10. DOI: 10.1016/j.tracli.2020.10.009.
23. Kipfer B., Daikeler T., Kuchen S., Hallal M., Andina N., Allam R. et al. Increased cardiovascular comorbidities in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia presenting with systemic inflammatory and autoimmune manifestations. Semin Hematol. 2018; 55(4): 242-7. DOI: 10.1053/j.seminhematol.2018.05.002.
24. Arinobu Y., Kashiwado Y., Miyawaki K., Ayano M., Kimoto Y., Mitoma H. et al. Autoimmune manifestations associated with myelodysplastic syndrome predict a poor prognosis. Medicine (Baltimore). 2021; 100(13): e25406. DOI: 10.1097/MD.0000000000025406.
25. Van der Weyden M.B., Harrison C., Hallam L., McVeigh D., Gan T.E., Taaffe L.M. Elevated red cell adenosine deaminase and haemolysis in a patient with a myelodysplastic syndrome. Br. J. Haematol. 1989; 73(1): 129-31. DOI: 10.1111/j.1365-2141.1989.tb00233.x.
26. Cull A.H., Mahendru D., Snetsinger B., Good D., Tyryshkin K., Chesney A. et al. Overexpression of Arginase 1 is linked to DNMT3A and TET2 mutations in lower-grade myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk. Res. 2018; 65: 5-13. DOI: 10.1016/j.leukres.2017.12.003.
27. Munder M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol. 2009; 158(3): 638-51. DOI: 10.1111/j.1476-5381.2009.00291.x.
28. Aul C., Gattermann N., Germing U., Winkelmann M., Heyll A., Runde V. et al. Serum deoxythymidine kinase in myelodysplastic syndromes. Cancer.1994; 73(2): 322-7. DOI: 10.1002/1097-0142(19940115)73:2<322::aid-cncr2820730215>3.0.co;2-e.
29. Reinhardt D., Haase D., Schoch C., Wollenweber S., Hinkelmann E., Heyden W. et al. Hemoglobin F in myelodysplastic syndrome. Ann. Hematol. 1998; 76(3-4): 135-8. DOI: 10.1007/s002770050377.
30. Steensma D.P., Higgs D.R., Fisher C.A., Gibbons R.J. Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood. 2004; 103(6): 2019-26. DOI: 10.1182/blood-2003-09-3360.
31. Song L.L., Zheng Q.Q., Xiao C., Guo J., Wu D., Su J. Y. et al. Zhonghua Xue Ye Xue Za Zhi. 2016; 37(10): 903-7. DOI: 10.3760/cma.j.issn.0253-2727.2016.10.018.
32. Cui R., Gale R.P., Zhu G., Xu Z., Qin T., Zhang Y. et al. Serum iron metabolism and erythropoiesis in patients with myelodysplastic syndrome not receiving RBC transfusions. Leuk. Res. 2014; 38(5): 545-50. DOI: 10.1016/j.leukres.2014.01.016.
33. Gattermann N., Rachmilewitz E.A. Iron overload in MDS-pathophysiology, diagnosis, and complications. Ann. Hematol. 2011; 90(1): 1-10. DOI: 10.1007/s00277-010-1091-1.
34. Gu S., Song X., Zhao Y., Guo J., Fei C., Xu F. et al. The evaluation of iron overload through hepcidin level and its related factors in myelodysplastic syndromes. Hematology. 2013; 18(5): 286-94. DOI: 10.1179/1607845412Y.0000000064.
35. Kim C.H., Leitch H.A. Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit. Rev. Oncol. Hematol. 2021; 163: 103367. DOI: 10.1016/j.critrevonc.2021.103367.
36. Gonçalves A.C., Cortesão E., Oliveiros B., Alves V., Espadana A. I., Rito L. et al. Oxidative stress and mitochondrial dysfunction play a role in myelodysplastic syndrome development, diagnosis, and prognosis: A pilot study. Free Radic Res. 2015; 49(9): 1081-94. DOI: 10.3109/10715762.2015.1035268.
37. Picou F., Vignon C., Debeissat C., Lachot S., Kosmider O., Gallay N. et al. Bone marrow oxidative stress and specific antioxidant signatures in myelodysplastic syndromes. Blood Adv. 2019; 3(24): 4271-9. DOI: 10.1182/bloodadvances.2019000677.
38. Srole D.N., Ganz T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J Cell Physiol. 2021; 236(7): 4888-4901. DOI:10.1002/jcp.30247.
39. Bondu S., Alary A.S., Lefèvre C., Houy A., Jung G., Lefebvre T. et al. A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome. Sci. Transl. Med. 2019; 11(500): eaav5467. DOI: 10.1126/scitranslmed.aav5467.
40. O’Toole D., Kennedy P., Quinn J., Murphy P.T. Is GDF15 beneficial to erythropoiesis in low grade myelodysplastic syndrome? Leuk. Lymphoma. 2015; 56(6): 1914-5. DOI: 10.3109/10428194.2014.977885.
41. Cui R., Gale R.P., Zhu G., Xu Z., Qin T., Zhang Y. et al. Serum iron metabolism and erythropoiesis in patients with myelodysplastic syndrome not receiving RBC transfusions. Leuk. Res. 2014; 38(5): 545-50. DOI: 10.1016/j.leukres.2014.01.016.
42. Riabov V., Mossner M., Stöhr A., Jann J. C., Streuer A., Schmitt N. et al. High erythroferrone expression in CD71+ erythroid progenitors predicts superior survival in myelodysplastic syndromes. Br. J. Haematol. 2021; 192(5): 879-91. DOI: 10.1111/bjh.17314.
43. Miura S., Kobune M., Horiguchi H., Kikuchi S., Iyama S., Murase K. et al. EPO-R+ myelodysplastic cells with ring sideroblasts produce high erythroferrone levels to reduce hepcidin expression in hepatic cells. Blood Cells Mol. Dis. 2019; 78: 1-8. DOI: 10.1016/j.bcmd.2019.04.014.
44. Murphy P.T., Quinn J.P., O’Donghaile D., Swords R., O’Donnell J.R. Myelodysplastic patients with raised percentage of hypochromic red cells have evidence of functional iron deficiency. Ann. Hematol. 2006; 85(7): 455-7. DOI: 10.1007/s00277-006-0107-3.
45. Yang W.C., Lin S.F., Wang S.C., Tsai W.C., Wu C.C., Wu S.C. The effects of human BDH2 on the cell cycle, differentiation, and apoptosis and associations with leukemia transformation in myelodysplastic syndrome. Int. J. Mol. Sci. 2020; 21(9): 3033. DOI: 10.3390/ijms21093033.
46. Liu Z., Lanford R., Mueller S., Gerhard G. S., Luscieti S., Sanchez M. et al. Siderophore-mediated iron trafficking in humans is regulated by iron. J. Mol. Med. (Berl). 2012; 90(10): 1209-21. DOI: 10.1007/s00109-012-0899-7.
47. Tani K., Fujii H., Takahashi K., Kodo H., Asano S., Takaku F. et al. Erythrocyte enzyme activities in myelodysplastic syndromes: elevated pyruvate kinase activity. Am. J. Hematol. 1989; 30(2): 97-103. DOI: 10.1002/ajh.28303002DOI.
48. Lintula R. Red cell enzymes in myelodysplastic syndromes: a review. Scand J Haematol Suppl. 1986; 45: 56-9. DOI: 10.1111/j.1600-0609.1986.tb00844.x.
49. Johnson R.M., Panchoosingh H., Goyette G. Jr., Ravindranath Y. Increased erythrocyte deformability in fetal erythropoiesis and in erythrocytes deficient in glucose-6-phosphate dehydrogenase and other glycolytic enzymes. Pediatr Res. 1999; 45(1): 106-13. DOI: 10.1203/00006450-199901000-00018.
50. Wimazal F., Sperr W.R., Kundi M., Vales A., Fonatsch C., Thalhammer-Scherrer R. et al. Prognostic significance of serial determinations of lactate dehydrogenase (LDH) in the follow-up of patients with myelodysplastic syndromes. Ann. Oncol. 2008; 19(5): 970-6. DOI: 10.1093/annonc/mdm595.
51. Jin J., Hu C., Yu M., Chen F., Ye L., Yin X. et al. Prognostic value of isocitrate dehydrogenase mutations in myelodysplastic syndromes: a retrospective cohort study and meta-analysis. PLoS One. 2014; 9(6): e100206. DOI: 10.1371/journal.pone.0100206.
52. Gu Y., Yang R., Yang Y., Zhao Y., Wakeham A., Li W. Y. et al. IDH1 mutation contributes to myeloid dysplasia in mice by disturbing heme biosynthesis and erythropoiesis. Blood. 2021; 137(7): 945-58. DOI: 10.1182/blood.2020007075.
53. Patnaik M.M., Hanson C.A., Hodnefield J.M., Lasho T. L., Finke C. M., Knudson R. A. et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia. 2012; 26(1): 101-5. DOI: 10.1038/leu.2011.298.
54. Perona G., Guidi G.C., Tummarello D., Mareni C., Battistuzzi G., Luzzato L. A new glucose 6-phosphate dehydrogenase variant (G-6-PD Verona) in a patient with myelodysplastic syndrome. Scand J Haematol. 1983; 30(5): 407-14. DOI: 10.1111/j.1600-0609.1983.tb02526.x.
55. Muchi H., Yamamoto Y. Studies on mitochondrial and cytoplasmic malate dehydrogenase in childhood myelodysplastic syndrome. Blood. 1983; 62(4): 808-14.
56. Montes P., Guerra-Librero A., García P., Cornejo-Calvo M. E., López M. D. S., Haro T. et al. Effect of 5-Azacitidine Treatment on Redox Status and Inflammatory Condition in MDS Patients. Antioxidants (Basel). 2022; 11(1): 139. DOI: 10.3390/antiox11010139.
57. Gabril’chak A.I., Khaliulin A.V., Selezneva I.A., Gusjakova O.A., Radomskaja V.M., Vasil’eva T.V. Method for assessing the metabolic activity of megakaryocytic bone marrow germ. Patent RF № 2672471; 2018. (in Russian)
58. Lin F. Y., Wu H. C., Cheng K. C., Tung C. L., Chang C. P., Feng Y. H. Adiponectin is down-regulated in bone marrow interstitial fluid in hematological malignancy. Int. J. Hematol. 2015; 102(3): 312-7. DOI: 10.1007/s12185-015-1831-z.
59. Krashin E., Ellis M., Cohen K., Viner M., Neumark E., Rashid G. et al. Chemical and thyroid hormone profile of the bone marrow interstitial fluid in hematologic disorders and patients without primary hematologic disorders. Hematol Oncol. 2018; 36(2): 445-50. DOI: 10.1002/hon.2493.
60. Iversen P. O., Wiig H. Tumor necrosis factor alpha and adiponectin in bone marrow interstitial fluid from patients with acute myeloid leukemia inhibit normal hematopoiesis. Clin Cancer Res. 2005; 11(19 Pt 1): 6793-9. DOI: 10.1158/1078-0432.CCR-05-1033.