Список литературы
Sachdev P.S., Lipnicki D.M., Kochan N.A., Crawford J.D., Thalamuthu A., Andrews G. et al. The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS One. 2015; 10 (11): e0142388. https://doi.org/10.1371/journal.pone.0142388
Patterson C. Alzheimer’s Disease International; London: 2018. World Alzheimer report. 2018: 1-48; https://www.alzint.org/u/WorldAlzheimerReport2018.pdf
Reitz C., Brayne C., Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011; 7 (3): 137-52. https://doi.org/10.1038/nrneurol.2011.2
Hauber A.B., Gnanasakthy A., Snyder E.H., Bala M.V., Richter A., Mauskopf J.A. Potential savings in the cost of caring for Alzheimer’s Disease. Treatment with rivastigmine. Pharmacoeconomics. 2000; 17 (4): 351-60. https://doi.org/10.2165/00019053-200017040-00005
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack Jr. C.R., Kawas C.H. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011; 7(3): 263-9. https://doi.org/10.1016/j.jalz.2011.03.005
Jack Jr. C.R., Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C. et al.Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011; 7 (3): 257-62. https://doi.org/10.1016/j.jalz.2011.03.004
Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011; 7(3): 280-92. https://doi.org/10.1016/j.jalz.2011.03.003
Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim Dement. 2011; 7(3): 270-9. https://doi.org/10.1016/j.jalz.2011.03.008
Емелин А.Ю., Лобзин В.Ю., Воробьев С.В. Когнитивные нарушения: руководство для врачей. М.: ПАО «Т8 Издательские технологии»; 2019
d’Abramo C., D’Adamio L., Giliberto L. Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease: Sensitivity, Specificity and Potential for Clinical Use. J. Pers. Med. 2020; 10(3): 116. https://doi.org/10.3390/jpm10030116
Harada R., Okamura N., Furumoto S., Tago T., Yanai K., Arai H. et al. Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules; 2016; 6 (1): 7. https://doi.org/10.3390/biom6010007
Camus V., Payoux P., Barré L., Desgranges B., Voisin T., Tauber C. et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39(4): 621-31. https://doi.org/10.1007/s00259-011-2021-8
Незнанов Н.Г., Ананьева Н.И., Залуцкая Н.М., Стулов И.К., Гальсман И.Е., Бельцева Ю.А. Визуальная шкальная МРТ оценка атрофических изменений головного мозга в диагностике ранней стадии болезни Альцгеймера (1 этап исследования). Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2016; 4: 61-5.
Литвиненко И.В., Емелин А.Ю., Лобзин В.Ю., Колмакова К.А. Нейровизуализационные методы диагностики болезни Альцгеймера и цереброваскулярных заболеваний, сопровождающихся когнитивными нарушениями. Неврология, нейропсихиатрия, психосоматика. 2019; 11(3S): 18-25.
Papa L., Robinson G., Oli M., Pineda J., Demery J., Brophy G. et al. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opin Med Diagn. 2008; 2(8): 937-45. https://doi.org/10.1517/17530059.2.8.937
Lewczuk P., Riederer P., O’Bryant S.E. Verbeek M.M., Dubois B., Visser J.P. et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J. Biol. Psychiatry. 2018; 19(4): 244-328. https://doi.org/10.1080/15622975.2017.1375556
Mielke M.M., Hagen C.E., Wennberg A.M.V., Airey D.C., Savica R., Knopman D.S. et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol. 2017; 74(9): 1073-80. https://doi.org/10.1001/jamaneurol.2017.1359
Pereira J.B., Westman E., Hansson O. Alzheimer’s Disease Neuroimaging Initiative. Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiol. Aging. 2017; 58: 14-29. https://doi.org/10.1016/j.neurobiolaging.2017.06.002
Jia L., Qiu Q., Zhang H. Chu L., Du Y., Zhang J. et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement. 2019; 15(8): 1071-80. https://doi.org/10.1016/j.jalz.2019.05.002
Rembach A., Faux N.G., Watt A.D., Pertile K.K., Rumble R.L., Trounson B.O. et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014; 10(1): 53-61. https://doi.org/10.1016/j.jalz.2012.12.006
Hanon O., Vidal J.S., Lehmann S., Bombois S., Allinquant B., Tréluyer J.-M. et al. Plasma amyloid levels within the Alzheimer’s process and correlations with central biomarkers. Alzheimers Dement. 2018; 14(7): 858-68. https://doi.org/10.1016/j.jalz.2018.01.004
Khalil M., Teunissen C.E., Otto M., Piehl F., Sormani M.P., Gattringer T. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018; 14(10): 577-89. https://doi.org/10.1038/s41582-018-0058-z
Weston P.S.J., Poole T., O’Connor A., Heslegrave A., Ryan N.S., Liang Y. et al. Longitudinal measurement of serum neurofilament light in presymptomatic familial Alzheimer’s disease. Alzheimer’s Res. Ther. 2019; 11(1): 19. https://doi.org/10.1186/s13195-019-0472-5
Schultz S.A., Strain J.F., Adedokun A., Wang Q., Preische O., Kuhle J. et al. Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer’s disease. Neurobiol. Dis. 2020; 142: 104960. https://doi.org/10.1016/j.nbd.2020.104960
Zhang H., Liu D., Wang Y., Huang H., Zhao Y., Zhou H. Meta-analysis of expression and function of neprilysin in Alzheimer’s disease. Neuroscience Letters. 2017; 657: 69-76. https://doi.org/10.1016/j.neulet.2017.07.060
Журавин И.А., Наливаева Н.Н., Козлова Д.И., Кочкина Е.Г., Федорова Я.Б., Гаврилова С.И. Активность холинэстераз и неприлизина плазмы крови как потенциальные биомаркеры синдрома мягкого когнитивного снижения и болезни Альцгеймера. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015; 12: 110-7
Casaletto K.B., Elahi F.M., Bettcher B.M., Neuhaus J., Bendlin B.B., Asthana S. et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology. 2017; 89(17): 1782-8. https://doi.org/10.1212/WNL.0000000000004569
Zetterberg H., Bendlin B.B. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol. Psychiatry. 2021; 26(1): 296-308. https://doi.org/10.1038/s41380-020-0721-9
Alzforum.org [electronic resource]. https://www.alzforum.org/alzbiomarker
Wennström M., Surova Y., Hall S., Nilsson C., Minthon L., Hansson O. et al. The Inflammatory Marker YKL-40 Is Elevated in Cerebrospinal Fluid from Patients with Alzheimer’s but Not Parkinson’s Disease or Dementia with Lewy Bodies. PLoS ONE. 2015; 10(8): e0135458. https://doi.org/10.1371/journal.pone.0135458
Janelidze S., Stomrud E., Palmqvist S., Zetterberg H., van Westen D., Jeromin A. et al. Plasma β-Amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016; 6: 26801. https://doi.org/10.1038/srep26801
Song L., Lachno D.R., Hanlon D., Shepro A., Jeromin A., Gemani D. et al. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1-42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimers Res Ther. 2016; 8(1): 58. https://doi.org/10.1186/s13195-016-0225-7
Бочарова Ю.А., Чеботарь И.В., Маянский Н.А. Возможности, проблемы и перспективы масс-спектрометрических технологий в медицинской микробиологии (обзор литературы). Клиническая лабораторная диагностика. 2016; 61(4): 249-56
Ovod V., Ramsey K.N., Mawuenyega K.G., Bollinger J.G., Hicks T., Schneider T. et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017; 13(8): 841-9. https://doi.org/10.1016/j.jalz.2017.06.2266
Verberk I.M.W., Slot R.E., Verfaillie S.C.J., Heijst H., Prins N.D., van Berckel B.N.M. et al. Plasma Amyloid as Prescreener for the Earliest Alzheimer Pathological Changes. Ann. Neurol. 2018; 84(5): 648-58. https://doi.org/10.1002/ana.25334
Лебедев А.А., Давыдов В.Ю., Новиков С.Н., Литвин Д.П., Макаров Ю.Н., Климович В.Б. и др. Биосенсоры на основе графена. Письма в журнал технической физики. 2016; 42(14): 28-35
Chauhan N., Maekawa T., Kumar D.N.S. Graphene based biosensors-Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 2017; 32(15): 2860-82. https://doi.org/10.1557/jmr.2017.91
Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007; 6(9): 652-5. https://doi.org/10.1038/nmat1967
Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012; 112(11): 6156-6214. https://doi.org/10.1021/cr3000412
Tehrani Z., Burwell G., Mohd Azraie M.A., Castaing A., Rickman R., Almarashi J.Q.M. et al. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials. 2014; 1(2): 025004. https://doi.org/10.1088/2053-1583/1/2/025004
Davies D.R., Sheriff S., Padlan E.A. Antibody-Antigen Complexes. J. Biological Chemistry. 1988.263(22):10541-4. https://doi.org/10.1146/annurev.biochem.59.1.439
Усиков A.С., Лебедев С.П., Роенков А.Д., Бараш И.С., Новиков С.В., Пузык М.В. и др. Исследование чувствительной способности графена для применений в качестве биосенсоров. Письма в журнал технической физики. 2020; 46(10): 3-6
Lebedev A.A., Davydov S.Y., Eliseyev I.A., Roenkov A.D., Avdeev O., Lebedev S.P. et al. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation and Characterization. Materials (Basel). 2021; 14(3): 590. https://doi.org/10.3390/ma14030590
Demeritte T., Nellore B.P.V., Kanchanapally R., Sinha S.S., Pramanik A., Chavva S.R. et al. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers. ACS Appl. Mater.Interfaces. 2015; 7(24): 13693-700. https://doi.org/10.1021/acsami.5b03619
Sun L., Zhong Y., Gui J., Wang X., Zhuang X., Weng J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.Int. J. Nanomedicine. 2018; 13: 843-56. https://doi.org/10.2147/IJN.S152163
Mars A., Hamami M., Bechnak L., Patra D., Raouafi N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta. 2018; 1036: 141-6. https://doi.org/10.1016/j.aca.2018.06.075
Toyos-Rodríguez C., García-Alonso F.J., de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors (Basel). 2020; 20(17): 4748. https://doi.org/10.3390/s20174748