Аннотация
Цель исследования — выявление значимых по антимикробной активности полипептидов сыворотки крови, содержащихся во фракции с молекулярной массой ниже 100 кДа.
Материал и методы. Данную фракцию получали пропусканием пуловой сыворотки крови от 5 здоровых доноров через молекулярный мембранный фильтр; протеом фракции изучали методом хромато-масс-спектрометрии (МС). Величины минимальных ингибирующих концентраций (МИК) серотрансферрина и альбумина по отношению к условно-патогенным микроорганизмам (УПМ) оценивали методом микроразведений в жидких питательных средах.
Результаты. Концентрацию известных антимикробных полипептидов (АМПП) в сыворотке крови человека сравнили с соответствующими им опубликованными референс-величинами МИК в отношении условно-патогенных микроорганизмов (УПМ): Candida albicans, Staphylococcus aureus, Escherichia coli; оказалось, что наиболее значимыми должны явиться лизоцим и липокалин. МС указанной фракции показала, что чувствительность метода из всех описанных АМПП позволяет определить лишь лизоцим, причем в количестве 0,044% от всех белков фракции. При этом среди полипептидов с содержанием ≥1% обнаружены 10 белков, которые, по данным литературы, могут непосредственно действовать против микроорганизмов, но ни один из них не цитируется в обзорах, посвященных АМПП. Для некоторых АМПП известны величины МИК, а у аполипопротеина А-1, альфа-1-антитрипсина, аполипопротеина A-II, тимозина β-4 — пределы МИК сравнимы с их концентрацией в плазме крови. Определены величины МИК двух АМПП — альбумина и серотрансферрина. Установлено, что серотрансферрин слабо влиял на рост C. albicans, но заметно снижал накопление биомассы S. aureus и E. coli в диапазоне 1,4-5,4 мг/мл, что соответствует его физиологическим уровням в плазме крови. Альбумин не отличался ярковыраженным антимикробным действием, но сильнее влиял на C. albicans и S. aureus, чем на E. coli, причем величины МИК соответствовали диапазону 25-50 мг/мл, что сравнимо с его физиологическими концентрациями.
Обсуждение. Традиционно изучаемые АМПП в отдельности, очевидно, не играют существенной роли в защите кровотока от микроорганизмов, за исключением синергического эффекта. Полипептиды, ранее не рассматриваемые в качестве АМПП, но присутствующие в кровотоке в высоких концентрациях и обладающие прямой антимикробной активностью, наряду с иммунокомпетентными клетками, являются «первой линией» защиты кровотока от УПМ.
Заключение. В связи с растущей резистентностью микроорганизмов к антимикробным препаратам (АМП) необходимо изучение защитного потенциала самого человека — АМПП, обладающих непосредственным действием на патогены. Выявление перспективных АМПП открывает возможности для создания АМП нового поколения.
Annotation
The aim of this study was to identify the most significant antimicrobial serum polypeptides contained in the fraction with a molecular weight below 100 kDa.
Material and methods. This fraction was obtained by passing pooled serum from 5 healthy donors through a molecular membrane filter; the fraction proteome was studied by chromatography-mass spectrometry (MS). The values of minimum inhibitory concentrations (MIC) of serotransferrin and albumin in relation to opportunistic microorganisms (OPM) were estimated using the microdilution method in liquid nutrient media.
Results. The concentration of known antimicrobial polypeptides (AMPP) in human blood serum was compared with the corresponding published MIC reference values for opportunistic microorganisms (OPM): Candida albicans, Staphylococcus aureus, Escherichia coli; it turned out that lysozyme and lipocalin should be the most significant. MS of the specified fraction showed that the sensitivity of the method of all described AMPP allows only lysozyme to be determined, and in an amount of 0.044% of all proteins in the fraction. Moreover, among polypeptides with a content of ≥1%, 10 proteins were found that, according to the literature, can directly act against microorganisms, but none of them are cited in reviews devoted to AMPP. For some AMPP, MIC values are known, and for apolipoprotein A-1, alpha-1-antitrypsin, apolipoprotein A-II, and thymosin β-4, the MIC ranges are comparable to their concentrations in blood plasma. The MIC values of two AMPP — albumin and serotransferrin — were determined. It was found that serotransferrin had a weak effect on the growth of C. albicans, but significantly reduced the accumulation of S. aureus and E. coli biomass in the range of 1.4-5.4 mg/ml, which corresponds to its physiological levels in blood plasma. Albumin did not have a pronounced antimicrobial effect, but had a stronger effect on C. albicans and S. aureus than on E. coli, with MIC values in the range of 25-50 mg/ml, which is comparable to its physiological concentrations.
Discussion. Traditionally studied AMPP individually apparently do not play a significant role in protecting blood flow, except for a possible synergistic effect. Polypeptides previously not considered as AMPP, but present in the bloodstream in high concentrations and possessing direct antimicrobial activity, along with immunocompetent cells, are the «first line» of bloodstream defense against OMP.
Conclusion. In connection with the growing resistance of microorganisms to antimicrobial drugs (AMP), it is necessary to study the protective potential of the human himself — AMPP, which have a direct effect on pathogens. Identification of promising AMPP opens up opportunities for the creation of a new generation of AMPP.
Key words: blood serum; antimicrobial polypeptides; antimicrobial activity; serotransferrin
Список литературы
ЛИТЕРАТУРА ( пп . 9-75 см . REFERENCES)
Арзуманян В.Г., Ожован И.М., Свитич О.А. Антимикробное действие альбумина на клетки бактерий и дрожжей. Бюллетень экспериментальной биологии и медицины. 2019; 167(6): 722-5.
Арзуманян В.Г., Джадаева А.В., Заборова В.А., Колыганова Т.И., Сергеева М.А. Оценка потенциальной эффективности действия антимикробных полипептидов потового секрета против стафилококков. Иммунопатология, аллергология, инфектология. 2023; (1): 60-9. DOI: 10.14427/jipai.2023.1.60.
Арзуманян В.Г., Ожован И.М., Качалкин А.В., Колыганова Т.И., Вартанова Н.О., Ильина И.В. Обнаружение дрожжевых грибов Naganishia albida у дерматологических пациентов. Бюллетень экспериментальной биологии и медицины. 2022; 174(11): 572-9. DOI: 10.47056/0365-9615-2022-174-11-572-579.
Иксанова А.М., Ожован И.М., Арзуманян В.Г., Колыганова Т.И., Самойликов П.В., Конаныхина С.Ю. и др. Антимикробная активность сыворотки крови и её взаимосвязь с показателями общего клинического анализа крови. Клиническая лабораторная диагностика. 2023; 68(7): 395-400. DOI: 10.51620/0869-2084-2023-68-7-395-400.
Каргальцева Н.М., Борисова О.Ю., Миронов А.Ю., Кочеровец В.И., Пименова А.С., Гадуа Н.Т. Инфекция кровотока у госпитальных терапевтических больных. Клиническая лабораторная диагностика. 2022; 67(6): 355-61. DOI: 10.51620/0869-2084-2022-67-6-355-361.
Леонов В.В., Миронов А.Ю., Леонова Л.В., Никитина Л.Ю. Этиологическая структура и биологические свойства возбудителей инфекций кровотока. Клиническая лабораторная диагностика. 2016; 61(11): 790-3. DOI: 10.18821/0869-2084-2016-11-790-793.
Миронов А.Ю., Савицкая К.И., Воробьев А.А. Микрофлора гнойно-септических заболеваний у больных в Московской области. Журнал микробиологии, эпидемиологии и иммунобиологии. 2000; (5): 11-5.
Миронов А.Ю., Миронова А.В. Резистентность госпитальных штаммов Escherichia coli, выделенных из крови пациентов, с ранжированием антимикробных препаратов по классификации AWaRe. Клиническая лабораторная диагностика. 2025; 70 (1): 44-51. DOI: 10.51620/0869-2084-2025-70-1-44-51.
REFERENCES
Arzumanyan V.G., Ozhovan I.M., Svitich O.A. Antimicrobial effect of albumin on bacterial and yeast cells. Bulletin of Experimental Biology and Medicine. 2019; 167(6): 722-5.
Arzumanyan V.G., Dzhadaeva A.V., Zaborova V.A., Kolyganova T.I., Sergeeva M.A. Evaluation of the potential effectiveness of antimicrobial sweat polypeptides against staphylococci. Immunopathologiya, allergologiya, infektologiya. 2023; (1): 60-9. DOI: 10.14427/jipai.2023.1.60. (in Russian)
Arzumanyan V.G., Ozhovan I.M., Kachalkin A.V., Kolyganova T.I., Vartanova N.O., Ilyina I.V. Detection of Naganishia albida yeast fungi in dermatological patients. Bulletin of Experimental Biology and Medicine. 2023; 174(5): 616-22. DOI: 10.47056/0365-9615-2022-174-11-572-579.
Iksanova A.M., Ozhovan I.M., Arzumanyan V.G., Kolyganova T.I., Samoilikov P.V., Konanykhina S.Yu. et al. Antimicrobial activity of blood serum and its relationship with general clinical blood test parameters. Klinicheskaya Laboratornaya Diagnostika. 2023; 68(7): 395-400. DOI: 10.51620/0869-2084-2023-68-7-395-400. (in Russian)
Kargaltseva N.M., Borisova O.Yu., Mironov A.Yu., Kocherovets V.I., Pimenova A.S., Gadua N.T. Bloodstream infection in hospitalized medical patients. Klinicheskaya Laboratornaya Diagnostika. 2022; 67(6): 355-61. DOI: 10.51620/0869-2084-2022-67-6-355-361. (in Russian)
Leonov V.V., Mironov A.Yu., Leonova L.Vю, Nikitina L.Yu. Etiological structure and biological properties of bloodstream infection pathogens. Klinicheskaya Laboratornaya Diagnostika. 2016; 61(11): 790-3. DOI: 10.18821/0869-2084-2016-11-790-793. (in Russian)
Mironov A.Yu., Savitskaya K.I., Vorob`yov A.A. Microflora of purulent-septic diseases in patients in the Moscow region. Zhurnal mikrobiologii, èpidemiologii i immunobiologii. 2000; (5): 11-5. (in Russian)
Mironov A.Yu., Mironova A.V. Resistance of hospital strains of Escherichia coli isolated from the blood of patients, with the ranking of antimicrobials according to the AWaRe classification. Klinicheskaya Laboratornaya Diagnostika. 2025; 70 (1): 44-51. (in Russian)
Allaker R.P., Grosvenor P.W., McAnerney D.C., Sheehan B.E., Srikanta B.H., Pell K. et al. Mechanisms of adrenomedullin antimicrobial action. Peptides. 2006; 27(4): 661-6. DOI: 10.1016/j.peptides.2005.08.025.
Allaker R.P., Zihni C., Kapas S. An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol. Med. Microbiol. 1999; 23(4): 289-93. DOI: 10.1111/j.1574-695X.1999.tb01250.x.
Aquino-Domínguez A.S., Romero-Tlalolini M.L.A., Torres-Aguilar H., Aguilar-Ruiz S.R. Recent advances in the discovery and function of antimicrobial molecules in platelets. Int. J. Mol. Sci. 2021; 22(19): 10230. DOI: 10.3390/ijms221910230.
Bahar A.A., Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013; 6(12): 1543-75. DOI: 10.3390/ph6121543.
Bakhshandeh Z., Halabian R., Imani Fooladi A.A., Jahanian-Najafabadi A., Jalili M.A., Roudkenar M.H. Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. Hematology. 2014; 19(8): 487-92. DOI: 10.1179/1607845414Y.0000000155.
Barroso-Sousa R., Lobo R.R., Mendonça P.R., Memória R.R., Spiller F., Cunha F.Q. et al. Decreased levels of alpha-1-acid glycoprotein are related to the mortality of septic patients in the emergency department. Clinics (Sao Paulo). 2013; 68(8): 1134-9. DOI: 10.6061/clinics/2013(08)12.
Besold A.N., Culbertson E.M., Nam L., Hobbs R.P., Boyko A., Maxwell C.N. et al. Antimicrobial action of calprotectin that does not involve metal withholding. Metallomics. 2018; 10(12): 1728-42. DOI: 10.1039/c8mt00133b.
Biernbaum E.N., Gnezda A., Akbar S., Franklin R., Venturelli P.A., McKillip J.L. Lactoferrin as an antimicrobial against Salmonella enterica and Escherichia coli O157:H7 in raw milk. JDS Commun. 2021; 2(3): 92-7. DOI: 10.3168/jdsc.2020-0030.
Bolatchiev A. Antibacterial activity of human defensins against Staphylococcus aureus and Escherichia coli. PeerJ. 2020; 8: e10455. DOI: 10.7717/peerj.10455.
Bruhn K.W., Spellberg B. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections. Curr. Opin. Microbiol. 2015; 27: 57-61. DOI: 10.1016/j.mib.2015.07.005.
Campanelli D., Detmers P.A., Nathan C.F., Gabay J.E. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J. Clin. Invest. 1990; 85(3): 904-15. DOI: 10.1172/JCI114518.
Concha M.I., Molina S., Oyarzún C., Villanueva J., Amthauer R. Local expression of apolipoprotein A-I gene and a possible role for HDL in primary defence in the carp skin. Fish Shellfish Immunol. 2003; 14(3): 259-73. DOI: 10.1006/fsim.2002.0435.
Curvelo J.A., Barreto A.L., Portela M.B., Alviano D.S., Holandino C., Souto-Padrón T. et al. Effect of the secretory leucocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: a therapeutic alternative? Arch. Oral Biol. 2014; 59(9): 928-37. DOI: 10.1016/j.archoralbio.2014.05.007.
Dalhoff A. Seventy-five years of research on protein binding. Antimicrob. Agents Chemother. 2018; 62(2): e01663-17. DOI: 10.1128/AAC.01663-17.
Drainas D., Harvey E., Lawrence A.J., Thomas A. Mechanisms for albumin-mediated membrane damage. Eur. J. Biochem. 1981; 114(2): 239-45. DOI: 10.1111/j.1432-1033.1981.tb05142.x.
Eaton J.W., Brandt P., Mahoney J.R., Lee J.T. Jr. Haptoglobin: a natural bacteriostat. Science. 1982; 215(4533): 691-3. DOI: 10.1126/science.7036344.
Ellison R.T., Giehl T.J., LaForce F.M. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 1988; 56(11): 2774-81. DOI: 10.1128/iai.56.11.2774-2781.1988.
Fernandes K.E., Weeks K., Carter D.A. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob. Agents Chemother. 2020; 64(5): e02284-19. DOI: 10.1128/AAC.02284-19.
Florea G., Tudorache I.F., Fuior E.V., Ionita R., Dumitrescu M., Fenyo I.M. et al. Apolipoprotein A-II, a player in multiple processes and diseases. Biomedicines. 2022; 10(7): 1578. DOI: 10.3390/biomedicines10071578.
Forney J.R., Yang S., Healey M.C. Synergistic anticryptosporidial potential of the combination alpha-1-antitrypsin and paromomycin. Antimicrob. Agents Chemother. 1997; 41(9): 2006-8. DOI: 10.1128/AAC.41.9.2006.
Fournier T., Medjoubi-N N., Porquet D. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta. 2000; 1482(1-2): 157-71. DOI: 10.1016/S0167-4838(00)00153-9.
Giles S., Czuprynski C. Novel role for albumin in innate immunity: serum albumin inhibits the growth of Blastomyces dermatitidis yeast form in vitro. Infect. Immun. 2003; 71(11): 6648-52. DOI: 10.1128/IAI.71.11.6648-6652.2003.
Hiemstra P.S., Maassen R.J., Stolk J., Heinzel-Wieland R., Steffens G.J., Dijkman J.H. Antibacterial activity of antileukoprotease. Infect. Immun. 1996; 64(11): 4520-4. DOI: 10.1128/iai.64.11.4520-4524.1996.
Hochepied T., Berger F.G., Baumann H., Libert C. Alpha(1)-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev. 2003; 14(1): 25-34. DOI: 10.1016/S1359-6101(02)00054-0.
Horwitz A.H., Williams R.E., Liu P.S., Nadell R. Bactericidal/permeability-increasing protein inhibits growth of a strain of Acholeplasma laidlawii and L forms of the gram-positive bacteria Staphylococcus aureus and Streptococcus pyogenes. Antimicrob. Agents Chemother. 1999; 43(9): 2314-6. DOI: 10.1128/AAC.43.9.2314.
Hu J., Peidaee P., Elshagmani E., Istivan T., Pirogova E. The effects of synthetic Azurocidin peptide analogue on Staphylococcus aureus bacterium. In: 13th IEEE International Conference on BioInformatics and BioEngineering; 2013; Nov 10-13. DOI: 10.1109/BIBE.2013.6701685.
Hussan J.R., Irwin S.G., Mathews B., Swift S., Williams D.L., Cornish J. Optimal dose of lactoferrin reduces the resilience of in vitro Staphylococcus aureus colonies. PLoS One. 2022; 17(8): e0273088. DOI: 10.1371/journal.pone.0273088.
Inthanachai T., Thammahong A., Edwards S.W., Virakul S., Kiatsurayanon C., Chiewchengchol D. The inhibitory effect of human beta-defensin-3 on Candida glabrata isolated from patients with candidiasis. Immunol. Invest. 2021; 50(1): 80-91. DOI: 10.1080/08820139.2020.1755307.
Jain A., Ahmad Khan A., Kaur R., Verma R.K., Bakshi J., Chatterjee A. et al. A proteomic analysis identifies higher AHSG (Alpha-2-HS-glycoprotein) in saliva of oropharyngeal cancer patients – a potential salivary biomarker. Oral Oncol. Rep. 2024; 10: 100478. DOI: 10.1016/j.oor.2024.100478.
Jain N., Ådén J., Nagamatsu K., Evans M.L., Li X., McMichael B. et al. Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin. Proc. Natl. Acad. Sci. U.S.A. 2017; 114(46): 12184-9. DOI: 10.1073/pnas.1708805114.
Janciauskiene S.M., Bals R., Koczulla R., Vogelmeier C., Köhnlein T., Welte T. The discovery of α1-antitrypsin and its role in health and disease. Respir. Med. 2011; 105(8): 1129-39. DOI: 10.1016/j.rmed.2011.02.002.
Johnston L.D., Brown G., Gauthier D., Reece K., Kator H., Van Veld P. Apolipoprotein A-I from striped bass (Morone saxatilis) demonstrates antibacterial activity in vitro. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008; 151(2): 167-75. DOI: 10.1016/j.cbpb.2008.06.011.
Kamli M.R., Sabir J.S.M., Malik M.A., Ahmad A. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase. Biomed. Pharmacother. 2022; 154: 113569. DOI: 10.1016/j.biopha.2022.113569.
Kaner Z., Ochayon D.E., Shahaf G., Baranovski B.M., Bahar N., Mizrahi M. et al. Acute phase protein α1-antitrypsin reduces the bacterial burden in mice by selective modulation of innate cell responses. J. Infect. Dis. 2015; 211(9): 1489-98. DOI: 10.1093/infdis/jiu620.
Kuipers M.E., de Vries H.G., Eikelboom M.C., Meijer D.K., Swart P.J. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 1999; 43(11): 2635-41. DOI: 10.1128/AAC.43.11.2635.
Kuten Pella O., Hornyák I., Horváthy D., Fodor E., Nehrer S., Lacza Z. Albumin as a biomaterial and therapeutic agent in regenerative medicine. Int. J. Mol. Sci. 2022; 23(18): 10557. DOI: 10.3390/ijms231810557.
Lifshits L.A., Bronshtein E., Attias M., Breuer Y., Cohen A., Gabay M. et al. Antifungal recombinant psoriasin of human origin effectively inhibits fungal growth on denture base. Oral Dis. 2025; 31(2): 672-81. DOI: 10.1111/odi.14815.
Lin C., Qiu L., Wang P., Zhang B., Yan L., Zhao C. Thymosin beta-4 participate in antibacterial immunity and wound healing in black tiger shrimp, Penaeus monodon. Fish Shellfish Immunol. 2023; 141: 109065. DOI: 10.1016/j.fsi.2023.109065.
Lin L., Pantapalangkoor P., Tan B., Bruhn K.W., Ho T., Nielsen T. et al. Transferrin iron starvation therapy for lethal bacterial and fungal infections. J. Infect. Dis. 2014; 210(2): 254-64. DOI: 10.1093/infdis/jiu049.
López-García B., Lee P.H., Yamasaki K., Gallo R.L. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J. Invest. Dermatol. 2005; 125(1): 108-15. DOI: 10.1111/j.0022-202X.2005.23713.x.
Magalhães J., Eira J., Liz M.A. The role of transthyretin in cell biology: impact on human pathophysiology. Cell Mol. Life Sci. 2021; 78(17-18): 6105-17. DOI: 10.1007/s00018-021-03899-3.
Maisetta G., Petruzzelli R., Brancatisano F.L., Esin S., Vitali A., Campa M. et al. Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides. 2010; 31(11): 1995-2002. DOI: 10.1016/j.peptides.2010.08.007.
Martin L., Koczera P., Simons N., Zechendorf E., Hoeger J., Marx G. et al. The human host defense ribonucleases 1, 3 and 7 are elevated in patients with sepsis after major surgery – a pilot study. Int. J. Mol. Sci. 2016; 17(3): 294. DOI: 10.3390/ijms17030294.
Moshtaghi H., Rashidimehr A., Shareghi B. Antimicrobial activity of nisin and lysozyme on foodborne pathogens Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli at different pH. J. Nutr. Food Secur. 2018; 3(4): 193-201.
Motizuki M., Itoh T., Yamada M., Shimamura S., Tsurugi K. Purification, primary structure, and antimicrobial activities of bovine apolipoprotein A-II. J. Biochem. 1998; 123(4): 675-79. DOI: 10.1093/oxfordjournals.jbchem.a021990. PMID: 9538260.
McCabe D., Cukierman T., Gabay J.E. Basic residues in azurocidin/HBP contribute to both heparin binding and antimicrobial activity. J. Biol. Chem. 2002; 277(30): 27477-88. DOI: 10.1074/jbc.M201586200.
Regenhard P., Leippe M., Schubert S., Podschun R., Kalm E., Grötzinger J. et al. Antimicrobial activity of bovine psoriasin. Vet. Microbiol. 2009; 136(3-4): 335-40. DOI: 10.1016/j.vetmic.2008.12.001.
Rocha E.R., Smith A., Smith C.J., Brock J.H. Growth inhibition of Bacteroides fragilis by hemopexin: proteolytic degradation of hemopexin to overcome heme limitation. FEMS Microbiol. Lett. 2001; 199(1): 73-8.
Ruiz M. Into the labyrinth of the lipocalin α1-acid glycoprotein. Front. Physiol. 2021; 12: 686251.
Salazar V.A., Arranz-Trullén J., Navarro S., Blanco J.A., Sánchez D., Moussaoui M. et al. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. Microbiologyopen. 2016; 5(5): 830-45. DOI: 10.1002/mbo3.373.
Schenk S., Schoenhals G.J., de Souza G., Mann M. A high confidence, manually validated human blood plasma protein reference set. BMC Med. Genomics. 2008; 1: 41. DOI: 10.1186/1755-8794-1-41.
Schittek B. The multiple facets of dermcidin in cell survival and host defense. J. Innate Immun. 2012; 4(4): 349-60. DOI: 10.1159/000336844.
Senyürek I., Paulmann M., Sinnberg T., Kalbacher H., Deeg M., Gutsmann T. et al. Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob. Agents Chemother. 2009; 53(6): 2499-2509. DOI: 10.1128/AAC.01679-08.
Spencer J.D., Schwaderer A.L., Wang H., Bartz J., Kline J., Eichler T. et al. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 2013; 83(4): 615-25. DOI: 10.1038/ki.2012.410.
Steinbakk M., Naess-Andresen C.F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M.K. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990; 336(8718): 763-5. DOI: 10.1016/0140-6736(90)93237-J.
Tang W.H., Wang C.F., Liao Y.D. Fetal bovine serum albumin inhibits antimicrobial peptide activity and binds drug only in complex with α1-antitrypsin. Sci. Rep. 2021; 11(1): 1267. DOI: 10.1038/s41598-020-80540-6.
Tang Y.Q., Yeaman M.R., Selsted M.E. Antimicrobial peptides from human platelets. Infect. Immun. 2002; 70(12): 6524-33.
Tavanti A., Maisetta G., Del Gaudio G., Petruzzelli R., Sanguinetti M., Batoni G. et al. Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates. Peptides. 2011; 32(12): 2484-7. DOI: 10.1016/j.peptides.2011.10.012.
Torrent M., Badia M., Moussaoui M., Sanchez D., Nogués M.V., Boix E. Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. FEBS J. 2010; 277(7): 1713-25. DOI: 10.1111/j.1742-4658.2010.07595.x.
Turner J., Cho Y., Dinh N.N., Waring A.J., Lehrer R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 1998; 42(9): 2206-14.
Villarroel F., Bastías A., Casado A., Amthauer R., Concha M.I. Apolipoprotein A-I, an antimicrobial protein in Oncorhynchus mykiss: evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish. Fish Shellfish Immunol. 2007; 23(1): 197-209. DOI: 10.1016/j.fsi.2006.10.008.
Wang W., Qu Q., Chen J. Identification, expression analysis, and antibacterial activity of apolipoprotein A-I from amphioxus (Branchiostoma belcheri). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019; 238: 110329. DOI: 10.1016/j.cbpb.2019.110329.
Wassell J. Haptoglobin: function and polymorphism. Clin. Lab. 2000; 46(11-12): 547-52.
Watanabe K., Ishima Y., Akaike T., Sawa T., Kuroda T., Ogawa W. et al. S-nitrosated α-1-acid glycoprotein kills drug-resistant bacteria and aids survival in sepsis. FASEB J. 2013; 27(2): 391-8.
Wu T., Samaranayake L.P., Leung W.K., Sullivan P.A. Inhibition of growth and secreted aspartyl proteinase production in Candida albicans by lysozyme. J. Med. Microbiol. 1999; 48(8): 721-30. DOI: 10.1099/00222615-48-8-721.
Xing Y., Ye Y., Zuo H., Li Y. Progress on the function and application of thymosin β4. Front. Endocrinol. (Lausanne). 2021; 12: 767785. DOI: 10.3389/fendo.2021.767785.
Yin X., Li X., Chen N., Mu L., Wu H., Yang Y. et al. Hemopexin as an acute phase protein regulates the inflammatory response against bacterial infection of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 2021; 187: 166-78.