Аннотация
Метаболизм триптофана связан с прогрессированием, иммунным ответом, а также выбором терапевтической стратегии
при раке молочной железы. Цель работы – разработка методики количественного определения триптофана в слюне методом капиллярного электрофореза для оценки потенциальной возможности применения в диагностике рака молочной железы. Проведено исследование на 90 добровольцах, разделенных на 3 группы: основная (рак молочной железы, n=40), группа
сравнения (фиброаденомы, n=30) и контрольная группа (условно здоровые, n=20). Показано, что концентрация триптофана
в слюне увеличивается в 1,53 раза при раке молочной железы по сравнению с доброкачественными патологиями молочных
желез и в 2,11 раза по сравнению со здоровым контролем. Внутри подгруппы больных раком молочной железы слюнная концентрация триптофана меняется неравномерно. Выделены факторы, при которых наблюдается повышение концентрации
триптофана в слюне, а именно: отсутствие регионарного метастазирования, высокая и средняя дифференцировка, наличие
экспрессии рецепторов HER2, отсутствие экспрессии рецепторов эстрогена и низкая пролиферативная активность опухоли. В целом, предложенный метод может быть ценным инструментом при изучении метаболических изменений, связанных
с онкологическими заболеваниями.
Annotation
Tryptophan metabolism is associated with progression, immune response, and choice of therapeutic strategy in breast cancer. The goal
of the work is to develop a method for the quantitative determination of tryptophan in saliva using capillary electrophoresis to assess
the potential for their use in the diagnosis of breast cancer. A study was conducted on 90 volunteers divided into 3 groups: the main
one (breast cancer, n=40), the comparison group (fibroadenomas, n=30) and the control group (conditionally healthy, n=20). It has
been shown that the concentration of tryptophan in saliva increases by 1.53 times in breast cancer compared with benign pathologies
of the mammary glands and by 2.11 times compared with healthy controls. Within a subgroup of breast cancer patients, tryptophan
concentrations vary unevenly. Factors under which an increase in the concentration of tryptophan in saliva is observed are identified,
namely: the absence of regional metastasis, high and medium differentiation, the presence of expression of HER2 receptors, the absence of expression of estrogen receptors and low proliferative activity of the tumor. In general, the proposed method can be a valuable
tool in the study of metabolic changes associated with cancer.
Key wоrds: saliva; capillary electrophoresis; amino acids; tryptophan; breast cancer
Список литературы
1. Friedman M. Analysis, nutrition, and health benefits of tryptophan.
International Journal of Tryptophan Research. 2018; 11:
1178646918802282. DOI: 10.1177%2F1178646918802282.
2. Lee H.O., Uzzo R.G., Kister D., Kruger W.D. Combination of serum
histidine and plasma tryptophan as a potential biomarker to detect
clear cell renal cell carcinoma. J. Transl. Med. 2017; 15 (1): 72. DOI:
10.1186/s12967-017-1178-8.
3. Lanser L., Kink P., Egger E.M., Willenbacher W., Fuchs D., Weiss
G. et al. Inflammation-induced tryptophan breakdown is related with
anemia, fatigue, and depression in cancer. Front Immunol. 2020; 11:
249. DOI: 10.3389/fimmu.2020.00249.
4. Wu Y., Wang T., Zhang C., Xing X.-H. A rapid and specific colorimetric method for free tryptophan quantification. Talanta. 2018; 176:
604-9. DOI: 10.1016/j.talanta.2017.08.002.
5. Tong Q., Song J., Yang G., Fan L., Xiong W., Fang J. Simultaneous
determination of tryptophan, kynurenine, kynurenic acid, xanthurenic
acid and 5-hydroxytryptamine in human plasma by LC-MS/MS and
its application to acute myocardial infarction monitoring. Biomed.
Chromatogr. 2018; 32 (4): е4156. DOI: 10.1002/bmc.4156.
6. Flieger J., Święch-Zubilewicz A., Śniegocki T., Dolar-Szczasny
J., Pizoń M. Determination of Tryptophan and Its Major Metabolites in Fluid from the Anterior Chamber of the Eye in Diabetic
Patients with Cataract by Liquid Chromotography Mass Spectrometry (LC-MS/MS). Molecules. 2018; 23 (11): 3012. DOI: 10.3390/
molecules23113012.
7. Karakawa S., Nishimoto R., Harada M., Arashida N. Simultaneous
Analysis of Tryptophan and Its Metabolites in Human Plasma Using
Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. Chromatography. 2019; 40 (3): 127-33. DOI: 10.15583/
jpchrom.2019.010.
8. Li L., Guo R., Zhang D., Du X. A novel system of galangin–potassium
permanganate–polyphosphoric acid for the determination of tryptophan and its chemiluminescence mechanism. Luminescence. 2015; 30
(5): 512-8. DOI: 10.1002/bio.2769.
9. Khoshnevisan K., Torabi F., Baharifar H., Sajjadi-Jazi S.M., Afjeh
M.S., Faridbod F., Larijani B., Khorramizadeh M. R. Determination
of the biomarker L-tryptophan level in diabetic and normal human
serum based on an electrochemical sensing method using reduced
graphene oxide/gold nanoparticles/18-crown-6. Anal. Bioanal. Chem.
2020; 412: 3615–27. DOI: 10.1007/s00216-020-02598-5.
10. Duru Kamaci Ü., Kamaci M. Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turk. J. Chem. 2022; 46 (3): 929-40. DOI: 10.55730/1300-
0527.3381.
11. Zhang R., Wang L.X., Zhang Y.D., Ge C.H., Wang J.P., Zhang Y.,
Zhang X.D. A fluorescent sensor of 3-aminobenzeneboronic acid
functionalized hydrothermal carbon spheres for facility detection of
L-tryptophan. Journal of Fluorescence. 2018; 28: 439–44. DOI:
10.1007/s10895-017-2205-0.
12. Fan M., Lu D., You R., Chen C., Lu Y., Wu Y., Shen H., Feng S.
Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and
colorimetric assay. Analytica Chimica Acta. 2020; 1119: 52-9. DOI:
10.1016/j.aca.2020.04.039.
13. Hosokawa S., Morinishi T., Ohara K., Yamaguchi K., Tada S., Tokuhara Y. A spectrophotometric method for the determination of tryptophan following oxidation by the addition of sodium hypochlorite pentahydrate. PLoS ONE 2023; 18 (1): e0279547. DOI: 10.1371/journal.
pone.0279547.
14. Friedman M., Finley J.W. Methods of tryptophan analysis. Journal
of Agricultural and Food Chemistry. 1971; 19 (4): 626–31. DOI:
10.1021/jf60176a010.
15. Arvidsson B., Johannesson N., Citterio A., Righetti P.G., Bergquist
J. High throughput analysis of tryptophan metabolites in a complex
matrix using capillary electrophoresis coupled to time-of-flight mass
spectrometry. Journal of Chromatography A. 2007; 1159 (1–2): 154-
8. DOI: 10.1016/j.chroma.2007.04.044.
16. Bayle C., Siri N., Poinsot V., Treilhou M., Caussé E., Couderc F.
Analysis of tryptophan and tyrosine in cerebrospinal fluid by capillary
electrophoresis and “ball lens” UV-pulsed laser-induced fluorescence
detection. Journal of Chromatography A. 2003; 1013 (1–2): 123-30.
DOI: 10.1016/S0021-9673(03)00939-7.
17. Fanali C. Enantiomer’s separation by capillary electrochromatography. TrAC Trends in Analytical Chemistry. 2019; 120: 115640. DOI:
10.1016/j.trac.2019.115640.
18. Huang Z., Yang X., Huang Y., Tang Z., Chen Y., Liu H., Huang M.,
Qing L., Li L., Wang Q., Jie Z., Jin X., Jia B. Saliva – a new opportunity for fluid biopsy. Clin. Chem. Lab. Med. 2023; 61 (1): 4-32. DOI:
10.1515/cclm-2022-0793.
19. Song M., Bai H., Zhang P., Zhou X., Ying B. Promising applications
of human-derived saliva biomarker testing in clinical diagnostics. International Journal of Oral Science 2023; 15 (1): 2. DOI: 10.1038/
s41368-022-00209-w.
20. Khurshid Z., Warsi I., Moin S.F., Slowey P.D., Latif M., Zohaib S., Zafar M.S. Biochemical analysis of oral fluids for disease detection. Adv.
Clin. Chem. 2021; 100: 205-53. DOI: 10.1016/bs.acc.2020.04.005.
21. Meghnani V., Mohammed N., Giauque C., Nahire R., David T. Performance characterization and validation of saliva as an alternative
specimen source for detecting hereditary breast cancer mutations by
next generation sequencing. Int. J. Genomics. 2016; 2016: 2059041.
DOI: 10.1155/2016/2059041.
22. Nijakowski K., Zdrojewski J., Nowak M., Gruszczyński D., Knoll
F., Surdacka A. Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review. Metabolites 2023; 13: 28. DOI: 10.3390/
metabo13010028.
23. Kaczor-Urbanowicz K.E., Wei F., Rao S.L., Kim J., Shin H., Cheng
J., Tu M., Wong D.T.W., Kim Y. Clinical validity of saliva and novel
technology for cancer detection. BBA — Reviews on Cancer 2019;
1872: 49–59. DOI: 10.1016/j.bbcan.2019.05.007.
24. Eftekhari A., Dizaj S.M., Sharifi S., Salatin S., Khalilov R., Samiei
M., Vahed S.Z., Ahmadian E. Salivary biomarkers in cancer. Adv.
Clin. Chem. 2022; 110: 171-92. DOI: 10.1016/bs.acc.2022.06.005.
25. Bel’skaya L.V., Sarf E.A., Loginova A.I. Diagnostic value of salivary
amino acid levels in cancer. Metabolites. 2023; 13 (8): 950. DOI:
10.3390/metabo13080950.
26. Bel’skaya L.V., Gundyrev I.A., Solomatin D.V. The role of amino ac