Список литературы
Driscoll J.A., Brody S.L., Kollef M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67: 351-68.
Lister P.D., Wolter D.J., Hanson N.D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009; 22: 582- 610.
Andrade S.S., Jones R.N., Gales A.C., Sader H.S. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J Antimicrob Chemother. 2003; 52: 140-1.
Lim T.P., Lee W., Tan T.Y. et al. Effective antibiotics in combination against extreme drug-resistant Pseudomonas aeruginosa with decreased susceptibility to polymyxin B. PLoS One. 2011; 6: e28177.
Cabot G., Ocampo-Sosa A.A., Dominguez M.A., et al. Spanish Network for Research in Infectious Diseases (REIPI). Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob. Agents Chemother. 2012; 56: 6349-57.
Breidenstein E.B.M., de la Fuente-Nunez C., Hancock R.E.W. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19: 419-26.
Cornaglia G., Giamarellou H., Rossolini G.M. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 2011; 11: 381-93.
Laupland K.B., Parkins M.D., Church D.L., Gregson D.B., Louie T.J., Conly J.M., Elsayed S., and Pitout J.D. Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary Health Region: importance of metallo-β-lactamase (MBL)-producing strains. J. Infect. Dis. 2005; 192:1606-12.
Zavascki A.P., Barth A.L., Fernandes J.F., Moro A.L., Goncalves A.L., and Goldani L.Z. Reappraisal of Pseudomonas aeruginosa hospital acquired pneumonia mortality in the era of metallo-β-lactamase-mediated multidrug resistance: a prospective observational study. Crit. Care. 2006; 10: R114.
Zavascki A.P., Barth A.L., and Goldani L.Z. Nosocomial bloodstream infections due to metallo-β-lactamase-producing Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2008; 61:1183-5.
Woodford N., Turton J.F., Livermore D.M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35: 736-55.
Stokes H.W., Martinez E., Roy Chowdhury P. et al. Class 1 integronassociated spread of resistance regions in Pseudomonas aeruginosa: plasmid or chromosomal platforms? J. Antimicrob. Chemother. 2012; 67: 1799-800.
Савинова Т.А., Лазарева А.В., Шамина О.В., Крыжановская О.А., Чеботарь И.В., Маянский Н.А. Генотипы и носительство металло-β-лактамаз среди карбапенемрезистентных Pseudomonas aeruginosa, выделенных у детей в г. Москве. Клиническая микробиология и антимикробная химиотерапия. 2018; 20(4): 370-4
Shibata N., Doi Y., Yamane K., Yagi T., Kurokawa H., Shibayama K., Kato H., Kai K., Arakawa Y. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 2003; 41(12): 5407-13.
Toleman M.A., Vinodh H., Sekar U., Kamat V., Walsh T.R. BlaVIM-2-harboring integrons isolated in India, Russia, and the United States arise from an ancestral class 1 integron predating the formation of the 3 conserved sequence Antimicrob. Agents Chemother. 2007; 51: 2636-8.
Miriagou V., Tzelepi E., Gianneli D., and Tzouvelekis L.S. Escherichia coli with a self-transferable, multi-resistant plasmid coding for the metallo-β-lactamase VIM-1. Antimicrob. Agents Chemother. 2003; 47: 395-7.
Siarkou V.I., Vitti D., Protonotariou E., Ikonomidis A., Sofianou D. Molecular epidemiology of outbreak-related pseudomonas aeruginosa strains carrying the novel variant blaVIM-17 metallo-beta-lactamase gene. Antimicrob. Agents Chemother. 2009; 53(4): 1325-30.
Toleman M.A., Biedenbach D., Bennett D.M., Jones R.N., and Walsh T.R. Italian metallo-beta-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother. 2005; 55: 61-70.
Paulsen I.T., Littlejohn T.G., Rådström P., Sundström L., Sköld O., Swedberg G., Skurray R.A. The 3’ Conserved Segment of Integrons Contains a Gene Associated with Multidrug Resistance to Antiseptics and Disinfectants. Antimicrob. Agents Chemother. 1993; 37(4): 761-8.
Wright L.L., Turton J.F., Hopkins K.L., Livermore D.M., Woodford N. Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK. J. Antimicrob. Chemother. 2015 Dec; 70(12): 3250-8.
Samuelsen O., Toleman M.A., Sundsfjord A. et al. Molecular epidemiology of metallo-b-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob. Agents Chemother. 2010; 54: 346-52.
Edelstein M.V., Skleenova E.N., Shevchenko O.V., D’souza J.W., Tapalski D.V., Azizov I.S., Sukhorukova M.V., Pavlukov R.A., Kozlov R.S., Toleman M.A., Walsh T.R. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013;13(10): 867-76.
Lolans K., Queenan A.M., Bush K., Sahud A., Quinn J.P. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-β-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother. 2005; 49: 3538-40.
Yan J.J., Hsueh P.R., Lu J.J., Chang F.Y., Ko W.C., Wu J.J. Characterization of acquired β-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. J. Antimicrob. Chemother 2006; 58: 530-6.
Baljin B., Baldan G., Chimeddorj B., Tulgaa K., Gunchin B., Sandag T., Pfeffer K., MacKenzie C.R., Wendel A.F. Faecal Carriage of Gram-Negative Multidrug Resistant Bacteria among Patients Hospitalized in Two Centres in Ulaanbaatar, Mongolia. PLoS One. 2016;11(12): e0168146.
Moyo S., Haldorsen B., Aboud S., Blomberg B., Maselle S.Y., Sundsfjord A., Langeland N., Samuelsen Ø. Identification of VIM-2-producing Pseudomonas aeruginosa from Tanzania is associated with sequence types 244 and 640 and the location of blaVIM-2 in a TniC integron. Antimicrob. Agents Chemother. 2015;59(1): 682-5.
Duljasz W., Gniadkowski M., Sitter S., Wojna A., and Jebelean C. First organisms with acquired metallo-β-lactamases (IMP-13, IMP-22, and VIM-2) reported in Austria. Antimicrob. Agents Chemother. 2009; 53: 2221-2.
Papagiannitsis C.C., Medvecky M., Chudejova K., Skalova A., Rotova V., Spanelova P., Jakubu V., Zemlickova H., Hrabak J. Czech Participants of the European Antimicrobial Resistance Surveillance Network. Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob. Agents Chemother. 2017; 61(12): e01811-7.