Список литературы
Kingry L.C., Petersen J. M. Comparative review of Francisella tularensis and Francisella novicida. Frontiers in cellular and infection microbiology. 2014; 4:35.
Sande M.G., Çaykara T., Silva C.J., Ligia R., Rodrigues I. New solutions to capture and enrich bacteria from complex samples. Medical Microbiology and Immunology. 2020; 209: 335-41.
Banada P.P., Deshpande S., Chakravorty S., Russo R., Occi J., Meister G., Jones K.J., Gelhaus C.H., Valderas M.W., Jones M., Connell N., Alland D. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System. Journal of Clinical Microbiology. 2017; 55(1): 291-301.
Осина Н.А., Сеничкина А.М., Бугоркова Т.В., Щербакова С.А. Разработка амплификационных тeст-систем для выявления возбудителя туляремии. Проблемы особо опасных инфекций, 2015; 2: 54-7.
Buse H.Y., Morris B.J., Rice E.W. Early detection of viable Francisella tularensis in environmental matrices by culture-based PCR. BMC microbiology. 2020; 20(1): 66.
Schmitt P.W., Splettstoesser M.P., Finke E.J., Grunow R. A novel screening ELISA and a confirmatory Western blot useful for diagnosis and epidemiological studies of tularaemia. Epidemiology and Infection. 2005;133(4): 759-66.
Splettstoesser W., Guglielmo-Viret V., Seibold E., Thullier P. Evaluation of an Immunochromatographic Test for Rapid and Reliable Serodiagnosis of Human Tularemia and Detection of Francisella tularensis-Specific Antibodies in Sera from Different Mammalian Species. Journal of Clinical Microbiology. 2010; 48(5): 1629-34.
Зайцев А.А., Гнусарева О.А., Царева Н.С., Остапович В.В., Борздова И.Ю., Куличенко А.Н. Применение иммунохроматографических тест-систем для экспресс-выявления липополисахарида Francisella tularensis при мониторинге природных очагов. Проблемы особо опасных инфекций. 2013;(1):78-80.
Hua F., Zhang P., Zhang F., Zhao Y., Li C., Sun C., Wang X., Yang R., Wang C., Yu A., Zhou L. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid detection of Francisella tularensis. Scientific reports. 2015; 5: 17178.
Онищенко Г.Г., Кузькин Б.П., Кутырев В.В., Щербакова С.А., Пакскина Н.Д., Топорков А.В. Актуальные направления совершенствования лабораторной диагностики особо опасных инфекционных болезней. Проблемы особо опасных инфекций. 2009; 1(99): 5-10.
Chen Y.-T., Kolhatkar A.G., Zenasni O., Xu S., Lee T.R. Biosensing Using Magnetic Particle Detection Techniques. Sensors. 2017; 17: 2300.
Aloni-Grinstein R., Schuster O., Yitzhaki S., Aftalion M., Maoz S., Steinberger-Levy I., Ber R., Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination. Frontiers Microbiology. 2017; 8:312.
Jang H., Hwang E.Y., Kim Y., Choo J., Jeong J., Lim D.W. Surface-enhanced Raman scattering and fluorescence-based dual nanoprobes for multiplexed detection of bacterial pathogens. Journal of biomedical nanotechnology. 2016; 12(10): 1938-51.
Yatsomboon A., Sermswan R.W., Wongratanacheewin S. Development of an immunomagnetic separation-ELISA for the detection of Burkholderia pseudomallei in blood samples. Asian Pacific Journal of Allergy and Immunology 2018; https://doi.org/10.12932/AP-080518-0307
Zhang M., Li Y., Jing H., Wang N., Wu S., Wang Q., Lin X. Development of polyclonal-antibody-coated immunomagnetic beads for separation and detection of koi herpesvirus in large-volume samples. Archives of Virology. 2020; 165:973-6.
Wang Z., Yue T., Yuan Y., Cai R., Niu C., Guo C. Development and evaluation of an immunomagnetic separation-ELISA for the detection of Alicyclobacillus spp. in apple juice. International Journal of Food Microbiology. 2013; 166(1): 28-33.
Singh S., Upadhyay M., Sharma J., Gupta S., Vivekanandan P., Elangovan R. A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections. Analyst. 2016; 141: 3358-66.
Kaur A., Kapil A., Elangovan R., Jha S., Kalyanasundaram D. Highly-sensitive detection of Salmonella typhi in clinical blood samples by magnetic nanoparticle-based enrichment and in-situ measurement of isothermal amplification of nucleic acids. PLoS ONE. 2018; 13(3): е0194817.
Garrido-Maestu A., Azinheiro S., Carvalho J., Espiña B., Prado M. Evaluation and implementation of commercial antibodies for improved nanoparticle-based immunomagnetic separation and real-time PCR for faster detection of Listeria monocytogenes. Journal of Food Science and Technology. 2020; 57:4143-51.
Westphal O., Jann K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Methods in carbohydrate chemistry. 1965; 5: 83-91.
Nowinski R.C., Lostrom M.E., Tam M.R., Stone M.R., Burnette W.N. The isolation of hybrid lines producing monoclonal antibodies against the p15(E) protein of ceotropic murine Leukemia viruses. Virology. 1979; 93: 111-26.
Егоров А.М., Осипов А.П., Дзантиев Б.Б., Гаврилов Е.М. Теория и практика иммуноферментного анализа. М.: Высшая школа; 1991.
Ветчинин С.С., Копылов П.Х., Николаева О.Г., Гаврюшкин А.В. Получение иммуномагнитных частиц для определения клеток Francisella tularensis. Проблемы особо опасных инфекций. 2011; 109: 50-3.